浙江省鄞州区四校联考2022-2023学年中考数学模拟试题含解析.doc

上传人:lil****205 文档编号:88309077 上传时间:2023-04-25 格式:DOC 页数:20 大小:1.03MB
返回 下载 相关 举报
浙江省鄞州区四校联考2022-2023学年中考数学模拟试题含解析.doc_第1页
第1页 / 共20页
浙江省鄞州区四校联考2022-2023学年中考数学模拟试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《浙江省鄞州区四校联考2022-2023学年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省鄞州区四校联考2022-2023学年中考数学模拟试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若一次函数的图象经过第一、二、四象限,则下列不等式一定成立的是( )ABCD2如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()ABCD

2、3下列各数中,相反数等于本身的数是( )A1B0C1D24下列因式分解正确的是( )Ax2+9=(x+3)2Ba2+2a+4=(a+2)2Ca3-4a2=a2(a-4)D1-4x2=(1+4x)(1-4x)5钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD6在ABC中,若=0,则C的度数是( )A45B60C75D1057如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD8的绝对值是( )ABCD9某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD10下列运算正确的是()Aa2a3=a6B(

3、)1=2C =4D|6|=611下列计算错误的是()Aaa=a2B2a+a=3aC(a3)2=a5Da3a1=a412如图,在平面直角坐标系中,OAB的顶点A在x轴正半轴上,OC是OAB的中线,点B、C在反比例函数y=(x0)的图象上,则OAB的面积等于()A2B3C 4D6二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_14计算_15如图,在四边形中,点从点出发以的速度向点运动,点从点出发以的速度向点运动,、两点同时出发,其中一点到达终点时另一点也停止运动若,当_时,是等腰三角形16已知=32,则的余角是_17如图,甲

4、和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_米18如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船

5、的航程为_海里(结果保留根号).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我们来定义一种新运算:对于任意实数 x、y,“”为 ab(a+1)(b+1)1.(1)计算(3)9(2)嘉琪研究运算“”之后认为它满足交换律,你认为她的判断 ( 正确、错误)(3)请你帮助嘉琪完成她对运算“”是否满足结合律的证明 20(6分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形

6、状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由21(6分)如图,AB为O的直径,点C在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;(2)AC2=2ADAO22(8分)(1)计算:|3|+(+)0()22cos60;(2)先化简,再求值:()+,其中a=2+23(8分)如图,已知在O中,AB是O的直径,AC8,BC1求O的面积;若D为O上一点,且ABD为等腰三角形,求CD的长24(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台

7、大收割机和1台小收割机每小时各收割小麦多少公顷?25(10分)RtABC中,ABC=90,以AB为直径作O交AC边于点D,E是边BC的中点,连接DE,OD(1)如图,求ODE的大小;(2)如图,连接OC交DE于点F,若OF=CF,求A的大小26(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到200

8、0元?27(12分)如图,在RtABC中,C=90,O、D分别为AB、AC上的点,经过A、D两点的O分别交于AB、AC于点E、F,且BC与O相切于点D(1)求证:;(2)当AC=2,CD=1时,求O的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】一次函数y=ax+b的图象经过第一、二、四象限,a0,a+b不一定大于0,故A错误,ab0,故B错误,ab0,故C错误,0,故D正确故选D.2、D【解析】分析:根据相似三角形的性质进行解答即可详解:在平行四边形ABCD中,AECD, EAFCDF, AFBC,EAFEB

9、C, 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.3、B【解析】根据相反数的意义,只有符号不同的数为相反数【详解】解:相反数等于本身的数是1故选B【点睛】本题考查了相反数的意义注意掌握只有符号不同的数为相反数,1的相反数是14、C【解析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(12x)故选C,考点:因式分解【详解】请在此输入详解!5、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、C【解析

10、】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数【详解】由题意,得cosA=,tanB=1,A=60,B=45,C=180-A-B=180-60-45=75故选C7、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成

11、的方程组的解8、C【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决【详解】在数轴上,点到原点的距离是,所以,的绝对值是,故选C【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.9、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元,由题意得0.8200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键10、D【解析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错

12、误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.11、C【解析】解:A、aa=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3a1=a4,正确,不合题意;故选C【点睛】本题考查幂的乘方与积的乘方;合并同类项;同底数幂的乘法;负整数指数幂12、B【解析】作BDx轴于D,CEx轴于E,BDCE,OC是OAB的中线,设CE=x,则BD=2x,C的横坐标为,B的横坐标为,OD=,OE=,DE=OE-OD=,AE=DE=,OA=OE+AE=,SOAB=OABD=1故选

13、B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判定和性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、+1【解析】根据对称性可知:GJBH,GBJH,四边形JHBG是平行四边形,JH=BG,同理可证:四边形CDFB是平行四边形,CD=FB,FG+JH+CD=FG+BG+FB=2BF,设FG=x,AFG=AFB,FAG=ABF=36,AFGBFA,AF2=FGBF,AF=AG=BG=1,x(x+1)=1,x=(负根已经舍弃),BF=+1=,FG+JH+CD=+1故答案为+114、【解析】根据同底数幂的乘法法则计算即可.【详解】故

14、答案是:【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.15、或【解析】根据题意,用时间t表示出DQ和PC,然后根据等腰三角形腰的情况分类讨论,当时,画出对应的图形,可知点在的垂直平分线上,QE=,AE=BP,列出方程即可求出t;当时,过点作于,根据勾股定理求出PQ,然后列出方程即可求出t【详解】解:由运动知,是等腰三角形,且,当时,过点P作PEAD于点E点在的垂直平分线上, QE=,AE=BP,当时,如图,过点作于,四边形是矩形,在中,点在边上,不和重合,此种情况符合题意,即或时,是等腰三角形故答案为:或【点睛】此题考查的是等腰三角形的定义和动点问题,掌握等腰三

15、角形的定义和分类讨论的数学思想是解决此题的关键16、58【解析】根据余角:如果两个角的和等于90(直角),就说这两个角互为余角即其中一个角是另一个角的余角可得答案【详解】解:的余角是:90-32=58故答案为58【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度17、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得: 解得 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知

16、识,解题的关键是读懂图象信息18、10海里【解析】本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程【详解】由已知可得:AC=600.5=30海里,又甲船以60海里/时的速度沿北偏东60方向航行,乙船沿北偏西30,BAC=90,又乙船正好到达甲船正西方向的B点,C=30,AB=ACtan30=30=10海里答:乙船的路程为10海里故答案为10海里【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)-21;(2)正确;(3)运

17、算“”满足结合律【解析】(1)根据新定义运算法则即可求出答案(2)只需根据整式的运算证明法则ab=ba即可判断(3)只需根据整式的运算法则证明(ab)c=a(bc)即可判断【详解】(1)(-3)9=(-3+1)(9+1)-1=-21(2)ab=(a+1)(b+1)-1ba=(b+1)(a+1)-1,ab=ba,故满足交换律,故她判断正确;(3)由已知把原式化简得ab=(a+1)(b+1)-1=ab+a+b(ab)c=(ab+a+b)c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+ca(bc)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b

18、+c(ab)c=a(bc)运算“”满足结合律【点睛】本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型20、(1);四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.【解析】(1)先确定出点A,B坐标,再利用待定系数法即可得出结论;先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论【详解】(1)如图1,反比例函数为,当时,当时,设直线的解析式为, , ,直线的解析式为;四边形是菱形,理由如下:如图2,由知,轴,点是线段

19、的中点,当时,由得,由得,四边形为平行四边形,四边形是菱形;(2)四边形能是正方形,理由:当四边形是正方形,记,的交点为,,当时, ,.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键21、(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分DAB知OAC=OCA=DAC,据此知OCAD,根据ADDC即可得证;(2)连接BC,证DACCAB即可得详解:(1)如图,连接OC,OA=OC,OAC=OCA,AC平分DAB,OAC=DAC,DAC=OCA,OCAD,

20、又ADCD,OCDC,DC是O的切线;(2)连接BC,AB为O的直径,AB=2AO,ACB=90,ADDC,ADC=ACB=90,又DAC=CAB,DACCAB,即AC2=ABAD,AB=2AO,AC2=2ADAO点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质22、(1)-1;(2).【解析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案【详解】(1)原式=3+1(2)22=441=1;(2)原式=+=当a=2+时,原式=【点睛】本题考查了学生的运算能力,解题的关键是熟

21、练运用运算法则,本题属于基础题型23、(1)25;(2)CD1,CD27【解析】分析:(1)利用圆周角定理的推论得到C是直角,利用勾股定理求出直径AB,再利用圆的面积公式即可得到答案;(2)分点D在上半圆中点与点D在下半圆中点这两种情况进行计算即可.详解:(1)AB是O的直径,ACB=90,AB是O的直径,AC8,BC1,AB10,O的面积5225(2)有两种情况:如图所示,当点D位于上半圆中点D1时,可知ABD1是等腰直角三角形,且OD1AB,作CEAB垂足为E,CFOD1垂足为F,可得矩形CEOF,CE,OF= CE=,=,,;如图所示,当点D位于下半圆中点D2时,同理可求.CD1,CD2

22、7点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.24、1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.【解析】此题可设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,根据题中的等量关系列出二元一次方程组解答即可【详解】设1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷根据题意可得解得答:每台大小收割机每小时分别收割0.4公顷和0.2公顷.【点睛】此题主要考查了二元一次方程组的实际应用,解题关键在于弄清题意,找到合适的等量关系25、(1)ODE=90;(2)A=45.【解析】分析:()连接OE,

23、BD,利用全等三角形的判定和性质解答即可; ()利用中位线的判定和定理解答即可详解:()连接OE,BD AB是O的直径,ADB=90,CDB=90 E点是BC的中点,DE=BC=BE OD=OB,OE=OE,ODEOBE,ODE=OBE ABC=90,ODE=90; ()CF=OF,CE=EB,FE是COB的中位线,FEOB,AOD=ODE,由()得ODE=90,AOD=90 OA=OD,A=ADO=点睛:本题考查了圆周角定理,关键是根据学生对全等三角形的判定方法及切线的判定等知识的掌握情况解答26、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50x(3)每件商品降价1元

24、时,商场日盈利可达到2000元【解析】(1)根据“盈利=单件利润销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值【详解】(1)当天盈利:(50-3)(30+23)=1692(元)答:若某天该商品每件降价3元,当天可获利1692元(2)每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(5

25、0-x)元故答案为2x;50-x(3)根据题意,得:(50-x)(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,商城要尽快减少库存,x=1答:每件商品降价1元时,商场日盈利可达到2000元【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式)27、(1)证明见解析;(2). 【解析】(1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得

26、证;(2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积【详解】证明:连接OD,BC为圆O的切线,ODCB,ACCB,ODAC,CAD=ODA,OA=OD,OAD=ODA,CAD=OAD,则 ;(2)解:连接ED,在RtACD中,AC=2,CD=1,根据勾股定理得:AD= ,CAD=OAD,ACD=ADE=90,ACDADE,即AD2=ACAE,AE=,即圆的半径为 ,则圆的面积为 【点睛】此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁