《浙江省嘉兴市六校联考2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省嘉兴市六校联考2022-2023学年中考数学全真模拟试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD2如图,反比例函数y的图象与直线yx的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D23如图图形中,是中
2、心对称图形的是( )ABCD4下列命题是真命题的是()A一组对边平行,另一组对边相等的四边形是平行四边形B两条对角线相等的四边形是平行四边形C两组对边分别相等的四边形是平行四边形D平行四边形既是中心对称图形,又是轴对称图形5下列实数中,为无理数的是()ABC5D0.31566反比例函数y的图象如图所示,以下结论:常数m1;在每个象限内,y随x的增大而增大;若点A(1,h),B(2,k)在图象上,则hk;若点P(x,y)在上,则点P(x,y)也在图象其中正确结论的个数是( )A1B2C3D47sin60的倒数为( )A2BCD8如图,AD为ABC的中线,点E为AC边的中点,连接DE,则下列结论中
3、不一定成立的是()ADC=DEBAB=2DECSCDE=SABCDDEAB9某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1部门人数每人所创年利润(单位:万元)11938743这11名员工每人所创年利润的众数、平均数分别是A10,1B7,8C1,6.1D1,610下列算式中,结果等于x6的是()Ax2x2x2 Bx2+x2+x2 Cx2x3 Dx4+x211如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A个B个C个D个124的平方根是( )A16B2C2D二、填空题:(本大题共6个小题,每小题4分,共24分)13
4、阅读材料:设=(x1,y1),=(x2,y2),如果,则x1y2=x2y1根据该材料填空:已知=(2,3),=(4,m),且,则m=_14的相反数是_,的倒数是_15计算:2111,2213,2317,24115,25131,归纳各计算结果中的个位数字规律,猜测220191的个位数字是_16如图,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A顺时针旋转90后,得到AFB,连接EF,下列结论:EAF45;AEDAEF;ABEACD;BE1+DC1DE1其中正确的是_(填序号)17分解因式:_18在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的
5、图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0360)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必
6、说明理由20(6分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题: (1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为度;(3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?21(6分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作
7、DA的平行线与AF相交于点F,已知,求AD的长;求证:FC是的切线22(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图和图,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图中m的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数23(8分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚
8、B处出发如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)24(10分)(1)计算:|3|2sin30+()2(2)化简:.25(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O画出AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论26(12分)如图,在ABC中,C=90,BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F试判
9、断直线BC与O的位置关系,并说明理由;若BD=2,BF=2,求O的半径27(12分)如图,O是ABC的外接圆,AB为直径,ODBC交O于点D,交AC于点E,连接AD、BD、CD(1)求证:ADCD;(2)若AB10,OE3,求tanDBC的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分析:面动成体由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是
10、曲面,故本选项错误;故选A点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转2、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则ABC的面积=2|k|=24=1故选A考点:反比例函数系数k的几何意义3、D【解析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形4、C【解析】根据平行四边形的五种判定定理(平行四边形的判定方法:两组对边分别平行的四边形;两组对角分别相等的四边形;两组对
11、边分别相等的四边形;一组对边平行且相等的四边形;对角线互相平分的四边形)和平行四边形的性质进行判断【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形故本选项错误;C、两组对边分别相等的四边形是平行四边形故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形故本选项错误;故选:C【点睛】考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法5、B【解析】根据无理数的定义解答即可.【详解】选项A、是分数,是有理数;选项B、是无理数;选项C、5为有理数
12、;选项D、0.3156是有理数;故选B【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.6、B【解析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可【详解】解:反比例函数的图象位于一三象限,m0故错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故错误;将A(1,h),B(2,k)代入y,得到hm,2km,m0hk故正确;将P(x,y)代入y得到mxy,将P(x,y)代入y得到mxy,故P(x,y)在图象上,则P(x,y)也在图象上故正确,故选:B【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符
13、号与其图象的关系是解决本题的关键7、D【解析】分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.8、A【解析】根据三角形中位线定理判断即可【详解】AD为ABC的中线,点E为AC边的中点,DC=BC,DE=AB,BC不一定等于AB,DC不一定等于DE,A不一定成立;AB=2DE,B一定成立;SCDE=SABC,C一定成立;DEAB,D一定成立;故选A【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键9、D【解析】根据中位数的定义即可求出x的值
14、,然后根据众数的定义和平均数公式计算即可【详解】解:这11个数据的中位数是第8个数据,且中位数为1,则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以这组数据的众数为1万元,平均数为万元故选:【点睛】此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键10、A【解析】试题解析:A、x2x2x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意故选A11、D【解析】求出不等式组的解集,根据已知求出12、34,求出2a4
15、、9b12,即可得出答案【详解】解不等式2xa0,得:x,解不等式3xb0,得:x,不等式组的整数解仅有x2、x3,则12、34,解得:2a4、9b12,则a3时,b9、10、11;当a4时,b9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值12、C【解析】试题解析:(2)2=4,4的平方根是2,故选C考点:平方根.二、填空题:(本大题共6个小题,每小题4分,共24分)13、6【解析】根据题意得,2m=34,解得m=6,故答案为6.14、2,【解析】试
16、题分析:根据相反数和倒数的定义分别进行求解,2的相反数是2,2的倒数是.考点:倒数;相反数15、1【解析】观察给出的数,发现个位数是循环的,然后再看20194的余数,即可求解【详解】由给出的这组数2111,2213,2311,24115,25131,个位数字1,3,1,5循环出现,四个一组,201945043,220191的个位数是1故答案为1【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键16、【解析】根据旋转得到,对应角CADBAF,由EAFBAF+BAECAD+BAE即可判断由旋转得出AD=AF, DAEEAF,及公共边即可证明在ABEACD中,只有ABAC、ABEACD
17、45两个条件,无法证明先由ACDABF,得出ACDABF45,进而得出EBF=90,然后在RtBEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定正确【详解】由旋转,可知:CADBAFBAC90,DAE45,CAD+BAE45,BAF+BAEEAF45,结论正确;由旋转,可知:ADAF在AED和AEF中,AEDAEF(SAS),结论正确;在ABEACD中,只有ABAC,、ABEACD45两个条件,无法证出ABEACD,结论错误;由旋转,可知:CDBF,ACDABF45,EBFABE+ABF90,BF1+BE1EF1AEDAEF,EFDE,又CDBF,BE1+DC1DE1,结论正确故
18、答案为:【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键17、【解析】直接利用完全平方公式分解因式得出答案【详解】解:=,故答案为.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键18、【解析】用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解【详解】解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图:共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,所以抽到卡
19、片上印有图案都是轴对称图形的概率故答案为【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率也考查了轴对称图形三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(1)30或150,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90即可;(1)在旋转过程中,OAG成为直角有两种情况:由0增大到90过程中,当OAG=90时,=30,由90增大到180过程中,当OAG=90时,=150;当旋转到A、O、
20、F在一条直线上时,AF的长最大,AF=AO+OF=+1,此时=315【详解】(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90,GAO+DEO=90,AHE=90,即DEAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0增大到90过程中,当OAG=90时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30,OAOD,OAAG,ODAG,DOG=AGO=30,即=30;()由90增大到180过程中,当OAG=90时,同理可求BOG=30,=18
21、030=150.综上所述,当OAG=90时,=30或150.如图3,当旋转到A.O、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45,此时=315.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用20、(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.【解析】(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;(2)由“主动质疑”
22、占的百分比乘以360即可得到结果;(3)求出“讲解题目”的学生数,补全统计图即可;(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果【详解】(1)根据题意得:22440%=560(名),则在这次评价中,一个调查了560名学生;故答案为:560;(2)根据题意得:360=54,则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;故答案为:54;(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:(4)根据题意得:2800(人),则“独立思考”的学生约有840人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图
23、中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1);(2)证明见解析.【解析】(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得AFOCFO,继而可证得FC是O的切线【详解】证明:连接OD,是的直径,设,在中,解得:,在中,;连接OF、OC,是切线,四边形FADC是平行四边形,平行四边形FADC是菱形,即,即,点C在上,是的切线【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理此题难度
24、适中,注意掌握辅助线的作法,注意数形结合思想的应用22、()50、31;()4;3;3.1;()410人【解析】()利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;()根据众数、中位数、加权平均数的定义计算即可;()将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解【详解】解:()本次接受随机抽样调查的学生人数为: 50(人),10031%,图中m的值为31.故答案为50、31;()这组样本数据中,4出现了16次,出现次数最多,这组数据的众数为4;将这组数据从小到大排列,其中处于中间的两个数均为3,有3,
25、这组数据的中位数是3;由条形统计图可得3.1,这组数据的平均数是3.1()150018%410(人)答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A【解析】过点A作ADBC于点D,在RtADC中,由得tanC=C=30AD=AC=240=120(米)在RtABD中,B=45ABAD120(米)120(24024)1201012(米/分
26、钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A24、 (1)2;(2) xy【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=342+4=2;(2)原式=xy点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本
27、题的关键.25、(1)如图所示见解析;(2)四边形OCED是菱形理由见解析.【解析】(1)根据图形平移的性质画出平移后的DEC即可;(2)根据图形平移的性质得出ACDE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论【详解】(1)如图所示;(2)四边形OCED是菱形理由:DEC由AOB平移而成,ACDE,BDCE,OA=DE,OB=CE,四边形OCED是平行四边形四边形ABCD是矩形,OA=OB,DE=CE,四边形OCED是菱形【点睛】本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.26、(1)相切,理由见解析;
28、(1)1【解析】(1)求出OD/AC,得到ODBC,根据切线的判定得出即可;(1)根据勾股定理得出方程,求出方程的解即可【详解】(1)直线BC与O的位置关系是相切,理由是:连接OD,OA=OD,OAD=ODA,AD平分CAB,OAD=CAD,ODA=CAD,ODAC,C=90,ODB=90,即ODBC,OD为半径,直线BC与O的位置关系是相切;(1)设O的半径为R,则OD=OF=R,在RtBDO中,由勾股定理得:OB=BD+OD,即(R+1) =(1)+R,解得:R=1,即O的半径是1.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出ODBC.27、(1)见解析;(2)tanDBC【解析】(1)先利用圆周角定理得到ACB90,再利用平行线的性质得AEO90,则根据垂径定理得到,从而有ADCD;(2)先在RtOAE中利用勾股定理计算出AE,则根据正切的定义得到tanDAE的值,然后根据圆周角定理得到DACDBC,从而可确定tanDBC的值【详解】(1)证明:AB为直径,ACB90,ODBC,AEOACB90,OEAC,ADCD;(2)解:AB10,OAOD5,DEODOE532,在RtOAE中,AE4,tanDAE,DACDBC,tanDBC【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.