《湖南省衡阳耒阳市2022-2023学年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省衡阳耒阳市2022-2023学年十校联考最后数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD2如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )ABCD3二次函数yax2bxc(a0)的图象如图,下列结论正确的是() Aa0Bb24ac0C当1x0D=14如图,点E在DBC的边DB上,点
2、A在DBC内部,DAE=BAC=90,AD=AE,AB=AC给出下列结论:BD=CE;ABD+ECB=45;BDCE;BE1=1(AD1+AB1)CD1其中正确的是()ABCD5如图,O中,弦BC与半径OA相交于点D,连接AB,OC,若A=60,ADC=85,则C的度数是()A25B27.5C30D356如图,不等式组的解集在数轴上表示正确的是()ABCD7如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(2,2)两点,当y=x的函数值大于的函数值时,x的取值范围是( )Ax2 Bx2C2x0或0x2 D2x0或x28按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO
3、、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC与DEF是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D49二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)10已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或10二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD
4、中,AB=,E是BC的中点,AEBD于点F,则CF的长是_12一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_cm113在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC,如果,那么点 C 叫做线段AB 的黄金分割点若点 P 是线段 MN 的黄金分割点,当 MN=1 时,PM 的长是_14如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB4,则OE的最小值为_15已知:如图,在AOB中,AOB=90,AO=3 cm,BO=4 cm将AOB绕顶点O,按顺时针方向旋转到A1OB1处,此时线段OB1与AB的交点D恰
5、好为AB的中点,则线段B1D=_cm16某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_三、解答题(共8题,共72分)17(8分)如图,在ABC中,ABAC,以AB为直径作O交BC于点D过点D作EFAC,垂足为E,且交AB的延长线于点F求证:EF是O的切线;已知AB4,AE1求BF的长18(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经
6、过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数)19(8分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程在科研所到宿舍楼之间修一条高科技的道路;对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为yax+b(0x3)当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万
7、元,配套工程费w防辐射费+修路费(1)当科研所到宿舍楼的距离x3km时,防辐射费y_万元,a_,b_;(2)若m90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?20(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,求末端操作器节点到地面直线的距离.(结果保留根号)21(8分)如图所示,在ABC中,AB=CB,以BC为直径的O交AC于点E,过点E作O的切线交AB于点F(1)求证:EFAB;(2
8、)若AC=16,O的半径是5,求EF的长22(10分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足OBCOFC,求证:CF为O的切线;若四边形ACFD是平行四边形,求sinBAD的值23(12分)如图,已知抛物线经过点A(1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动
9、过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由24如图,以ABC的边AB为直径的O与边AC相交于点D,BC是O的切线,E为BC的中点,连接AE、DE求证:DE是O的切线;设CDE的面积为 S1,四边形ABED的面积为 S1若 S15S1,求tanBAC的值;在(1)的条件下,若AE3,求O的半径长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决
10、本题的关键是估计的大小.2、A【解析】先利用勾股定理计算出AB,再在RtBDE中,求出BD即可;【详解】解:C=90,AC=4,BC=3,AB=5,ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=AC=4,DE=BC=3,BE=AB-AE=5-4=1,在RtDBE中,BD=,故选A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等3、D【解析】试题分析:根据二次函数的图象和性质进行判断即可.解:抛物线开口向上,A选项错误,抛物线与x轴有两个交点, B选项错误,由图象可知,当1x3时,y,向右画;
11、,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “” ,“” 要用实心圆点表示; “ ” 要用空心圆点表示.7、D【解析】试题分析:观察函数图象得到当2x0或x2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值故选D考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用8、C【解析】根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得
12、出答案【详解】解:根据位似性质得出ABC与DEF是位似图形,ABC与DEF是相似图形,将ABC的三边缩小的原来的,ABC与DEF的周长比为2:1,故选项错误,根据面积比等于相似比的平方,ABC与DEF的面积比为4:1故选C【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键9、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质10、B【解析】试题分析
13、: 2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,x2=1当1是腰时,2是底边,此时周长=1+1+2=2; 当1是底边时,2是腰,2+21,不能构成三角形 所以它的周长是2 考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】试题解析:四边形ABCD是矩形, AEBD, ABEADB, E是BC的中点, 过F作FGBC于G, 故答案为12、【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解
14、详解:圆锥的底面半径为5cm,圆锥的底面圆的周长=15=10,圆锥的侧面积=101=10(cm1) 故答案为10点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长也考查了扇形的面积公式:S=lR,(l为弧长)13、【解析】设PM=x,根据黄金分割的概念列出比例式,计算即可【详解】设PM=x,则PN=1-x,由得,化简得:x2+x-1=0,解得:x1,x2(负值舍去),所以PM的长为【点睛】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割14、1【解
15、析】根据等边三角形的性质可得OCAC,ABD30,根据“SAS”可证ABDACE,可得ACE30ABD,当OEEC时,OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60,BADCAE,且ABAC,ADAE,ABDACE(SAS)ACE30ABD当OEEC时,OE的长度最小,OEC90,ACE30OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键15、1.1【解析】试题解析:在AOB
16、中,AOB=90,AO=3cm,BO=4cm,AB=1cm,点D为AB的中点,OD=AB=2.1cm将AOB绕顶点O,按顺时针方向旋转到A1OB1处,OB1=OB=4cm,B1D=OB1OD=1.1cm故答案为1.116、 【解析】通过找到临界值解决问题【详解】由题意知,令3x-1=x,x=,此时无输出值当x时,数值越来越大,会有输出值;当x时,数值越来越小,不可能大于10,永远不会有输出值故x,故答案为x【点睛】本题考查不等式的性质,解题的关键是理解题意,学会找到临界值解决问题三、解答题(共8题,共72分)17、(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BD
17、CD,根据三角形的中位线可得ODAC,所以得ODEF,从而得结论;(2)证明ODFAEF,列比例式可得结论【详解】(1)证明:连接OD,AD,AB是O的直径,ADBC,ABAC,BDCD,OAOB,ODAC,EFAC,ODEF,EF是O的切线;(2)解:ODAE,ODFAEF,AB4,AE1,BF2【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键18、(1)甲服装的进价为300元、乙服装的进价为1元(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元【解析】(1)若设甲服装的成本
18、为x元,则乙服装的成本为(500-x)元根据公式:总利润=总售价-总进价,即可列出方程(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242(1+10%)=266.2(元),进而利用不等式求出即可【详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%(1+30%)x+90%(1+20%)(500-x)-500=67,解得:x=300,500-x=1答:甲服装的成本为300元、乙服装的成本为1元(2)乙服装的成本为1元,经过两次上调价格后,使乙
19、服装每件的进价达到242元,设每件乙服装进价的平均增长率为y,则,解得:=0.1=10%,=-2.1(不合题意,舍去)答:每件乙服装进价的平均增长率为10%;(3)每件乙服装进价按平均增长率再次上调再次上调价格为:242(1+10%)=266.2(元)商场仍按9折出售,设定价为a元时0.9a-266.20解得:a故定价至少为296元时,乙服装才可获得利润考点:一元二次方程的应用,不等式的应用,打折销售问题19、 (1)0,360,101;(2)当距离为2公里时,配套工程费用最少;(3)0m1【解析】(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,即可求解;(2)根据题目:配套
20、工程费w防辐射费+修路费分0x3和x3时讨论.当0x3时,配套工程费W90x2360x+101,当x3时,W90x2,分别求最小值即可;(3)0x3,Wmx2360x+101,(m0),其对称轴x,然后讨论:x=3时和x3时两种情况m取值即可求解【详解】解:(1)当x1时,y720,当x3时,y0,将x、y代入yax+b,解得:a360,b101,故答案为0,360,101;(2)当0x3时,配套工程费W90x2360x+101,当x2时,Wmin720;当x3时,W90x2,W随x最大而最大,当x3时,Wmin810720,当距离为2公里时,配套工程费用最少;(3)0x3,Wmx2360x+
21、101,(m0),其对称轴x,当x3时,即:m60,Wminm()2360()+101,Wmin675,解得:60m1;当x3时,即m60,当x3时,Wmin9m675,解得:0m60,故:0m1【点睛】本题考查了二次函数的性质在实际生活中的应用最值问题常利函数的增减性来解答20、()cm.【解析】作BGCD,垂足为G,BHAF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BGCD,垂足为G,BHAF,垂足为H,在中,BCD=60,BC=60cm,在中,BAF=45,AB=60cm,D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,
22、从而利用锐角三角函数的定义求出相关线段.21、(1)证明见解析;(2) 4.8.【解析】(1)连结OE,根据等腰三角形的性质可得OEC=OCA、A=OCA,即可得A=OEC,由同位角相等,两直线平行即可判定OEAB,又因EF是O的切线,根据切线的性质可得EFOE,由此即可证得EFAB;(2)连结BE,根据直径所对的圆周角为直角可得,BEC=90,再由等腰三角形三线合一的性质求得AE=EC =8,在RtBEC中,根据勾股定理求的BE=6,再由ABE的面积=BEC的面积,根据直角三角形面积的两种表示法可得86=10EF,由此即可求得EF=4.8.【详解】(1)证明:连结OEOE=OC,OEC=OC
23、A,AB=CB,A=OCA,A=OEC,OEAB,EF是O的切线,EFOE,EFAB(2)连结BEBC是O的直径,BEC=90, 又AB=CB,AC=16,AE=EC=AC=8,AB=CB=2BO=10,BE=,又ABE的面积=BEC的面积,即86=10EF,EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.22、 (1)见解析;(2).【解析】(1)连接OC,根据等腰三角形的性质得到OCB=B,OCB=F,根据垂径定理得到OFBC,根据余角的性质得到OCF=90,于是得到结论;(2
24、)过D作DHAB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论【详解】解:(1)连接OC,OC=OB,OCB=B,B=F,OCB=F,D为BC的中点,OFBC,F+FCD=90,OCB+FCD=90,OCF=90,CF为O的切线;(2)过D作DHAB于H,AO=OB,CD=DB,OD=AC,四边形ACFD是平行四边形,DF=AC,设OD=x,AC=DF=2x,OCF=90,CDOF,CD2=ODDF=2x2,CD=x,BD=x,AD=x,OD=x,
25、BD=x,OB=x,DH=x,sinBAD=【点睛】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键23、(1)y=x2+x+2;(2)m=1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(1,0)时,以点B、Q、M为顶点的三角形与BOD相似【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QMDF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知ODB=QMB,故分DOB=
26、MBQ=90,利用DOBMBQ得,再证MBQBPQ得,即,解之即可得此时m的值;BQM=90,此时点Q与点A重合,BODBQM,易得点Q坐标详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=-,则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,直线BD解析式为y=x-2,QMx轴,P(m,0),Q(m,-m2+m+2)、M(m,m-2),则QM=-m2+m+2-(m-2)=-m
27、2+m+4,F(0,)、D(0,-2),DF=,QMDF,当-m2+m+4=时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:QMDF,ODB=QMB,分以下两种情况:当DOB=MBQ=90时,DOBMBQ,则,MBQ=90,MBP+PBQ=90,MPB=BPQ=90,MBP+BMP=90,BMP=PBQ,MBQBPQ,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,m=3,点Q的坐标为(3,2);当BQM=90时,此时点Q与点A重合,BODBQM,此时m=-1,点Q的坐标为(-1,0
28、);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与BOD相似点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用【详解】请在此输入详解!24、(1)见解析;(1)tanBAC;(3)O的半径1【解析】(1)连接DO,由圆周角定理就可以得出ADB=90,可以得出CDB=90,根据E为BC的中点可以得出DE=BE,就有EDB=EBD,OD=OB可以得出ODB=OBD,由等式的性质就可以得出ODE=90就可以得出结论(1)由S1=5 S1可得ADB的面积是CDE面积的4倍,可求得
29、AD:CD=1:1,可得则tanBAC的值可求;(3)由(1)的关系即可知,在RtAEB中,由勾股定理即可求AB的长,从而求O的半径.【详解】解:(1)连接OD,ODOBODBOBDAB是直径,ADB90,CDB90E为BC的中点,DEBE,EDBEBD,ODB+EDBOBD+EBD,即EDOEBOBC是以AB为直径的O的切线,ABBC,EBO90,ODE90,DE是O的切线;(1)S15 S1SADB1SCDBBDCADBDB1ADDCtanBAC (3)tanBAC,得BCABE为BC的中点BEABAE3,在RtAEB中,由勾股定理得,解得AB4故O的半径RAB1【点睛】本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键