湖南省常德市桃源县市级名校2022-2023学年十校联考最后数学试题含解析.doc

上传人:lil****205 文档编号:88308502 上传时间:2023-04-25 格式:DOC 页数:22 大小:985.50KB
返回 下载 相关 举报
湖南省常德市桃源县市级名校2022-2023学年十校联考最后数学试题含解析.doc_第1页
第1页 / 共22页
湖南省常德市桃源县市级名校2022-2023学年十校联考最后数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《湖南省常德市桃源县市级名校2022-2023学年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省常德市桃源县市级名校2022-2023学年十校联考最后数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,ABC为等腰直角三角形,C=90,点P为ABC外一点,CP=,BP=3,AP的最大值是()A+3B4C5D32某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A20%B11%C10%D9.5%3如图,AB为O的直径,CD是O的弦,ADC=35,则C

2、AB的度数为( )A35B45C55D654不等式2x11的解集在数轴上表示正确的是()ABCD5某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A参加本次植树活动共有30人B每人植树量的众数是4棵C每人植树量的中位数是5棵D每人植树量的平均数是5棵6如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD7如图,将ABC沿BC边上的中线AD平移到ABC的位置,已知ABC的面积为9,阴影部分三角形的面积为1若AA=1,则A

3、D等于()A2B3CD8下列所给函数中,y随x的增大而减小的是()Ay=x1By=2x2(x0)CDy=x+19如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过ABC区域(包括边界),则a的取值范围是()A或B或C或D10一个几何体的三视图如图所示,那么这个几何体是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,摆第n层图需要_个三角形12如图,在ABC中,B40

4、,C45,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则DAE_13如图,已知AB是O的直径,点C在O上,过点C的切线与AB的延长线交于点P,连接AC,若A=30,PC=3,则BP的长为 14对于函数,我们定义(m、n为常数)例如,则已知:若方程有两个相等实数根,则m的值为_15已知关于X的一元二次方程有实数根,则m的取值范围是_16如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BCAB,ABCD,AB=4,BD=2,tanBAC=3,则线段BC的长是_三、解答题(共8题,共72分)17(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,

5、读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率50.26180.36714880.16合计1 (1)统计表中的_,_,_;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.18(8分)如图,O是ABC的外接圆,FH是O的切线,切点为F,FHBC,连结AF交BC于E,ABC的平分线BD交AF于D,连结BF(1)证明:AF平分BAC;(2)证明:BF=FD;(

6、3)若EF=4,DE=3,求AD的长19(8分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n)求直线AB的解析式和点B的坐标;求ABP的面积(用含n的代数式表示);当SABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标20(8分)如图,在ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1求:ABD的面积21(8分)如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为am的正方形,C区是边长为bm的正方形

7、列式表示每个B区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a20,b10,求整个长方形运动场的面积22(10分)先化简,再求值:(2),其中x满足x2x4=023(12分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3)(1)求抛物线L的顶点坐标和A点坐标(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m0)是抛物线L2上的一点,是否存在点P,使得PAC为等腰直角三角形,若存在,请直接写出抛物线L2

8、的表达式,若不存在,请说明理由24如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上 (1)b =_,c =_,点B的坐标为_;(直接填写结果)(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】过点C作,且CQ=CP,连接AQ,PQ,证明根据全等

9、三角形的性质,得到 根据等腰直角三角形的性质求出PQ的长度,进而根据,即可解决问题.【详解】过点C作,且CQ=CP,连接AQ,PQ, 在和中 AP的最大值是5.故选:C.【点睛】考查全等三角形的判定与性质,三角形的三边关系,作出辅助线是解题的关键.2、C【解析】设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为根据题意,得=1解得,(不合题意,舍去)答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降

10、价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.3、C【解析】分析:由同弧所对的圆周角相等可知B=ADC=35;而由圆周角的推论不难得知ACB=90,则由CAB=90-B即可求得.详解:ADC=35,ADC与B所对的弧相同,B=ADC=35,AB是O的直径,ACB=90,CAB=90-B=55,故选C点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.4、D【解析】先求出不等式的解集,再在数轴上表示出来即可【详解】移项得,2x1+1,合并同类项得,2x2,x的系数化为1得,x1在数轴上表示为:故选D【点睛】本题考查了解一元一次不

11、等式,熟练掌握运算法则是解题的关键5、D【解析】试题解析:A、4+10+8+6+2=30(人),参加本次植树活动共有30人,结论A正确;B、108642,每人植树量的众数是4棵,结论B正确;C、共有30个数,第15、16个数为5,每人植树量的中位数是5棵,结论C正确;D、(34+410+58+66+72)304.73(棵),每人植树量的平均数约是4.73棵,结论D不正确故选D考点:1.条形统计图;2.加权平均数;3.中位数;4.众数6、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应

12、角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后

13、求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2A

14、M,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形

15、的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键7、A【解析】分析:由SABC=9、SAEF=1且AD为BC边的中线知SADE=SAEF=2,SABD=SABC=,根据DAEDAB知,据此求解可得详解:如图,SABC=9、SAEF=1,且AD为BC边的中线,SADE=SAEF=2,SABD=SABC=,将ABC沿BC边上的中线AD平移得到ABC,AEAB,DAEDAB,则,即,解得AD=2或AD=-(舍),故选A点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中

16、线的性质、相似三角形的判定与性质等知识点8、A【解析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项【详解】解:A此函数为一次函数,y随x的增大而减小,正确;B此函数为二次函数,当x0时,y随x的增大而减小,错误;C此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D此函数为一次函数,y随x的增大而增大,错误故选A【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键9、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值

17、范围是: 当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过ABC区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小.10、C【解析】由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱故选C二、填空题(本大题共6个小题,每小题3分,共18分)11、n2n+1【解析】观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;可得,每一层比上一层多的个数依次为2,4,6,据此作答【详解】观察可得,第1层三角形的个数

18、为1,第2层三角形的个数为222+1=3,第3层三角形的个数为323+1=7,第四层图需要424+1=13个三角形摆第五层图需要525+1=21.那么摆第n层图需要n2n+1个三角形。故答案为:n2n+1.【点睛】本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.12、10【解析】根据线段的垂直平分线得出AD=BD,AE=CE,推出B=BAD,C=CAE,求出BAD+CAE的度数即可得到答案【详解】点D、E分别是AB、AC边的垂直平分线与BC的交点,AD=BD,AE=CE,B=BAD,C=CAE,B=40,C=45,B+C=85,BAD+CAE=85,DAE=BAC-(BAD+C

19、AE)=180-85-85=10,故答案为10【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键13、【解析】试题分析:连接OC,已知OA=OC,A=30,所以OCA=A=30,由三角形外角的性质可得COB=A+ACO=60,又因PC是O切线,可得PCO=90,P=30,再由PC=3,根据锐角三角函数可得OC=PCtan30=,PC=2OC=2,即可得PB=POOB=.考点:切线的性质;锐角三角函数14、 【解析】分析:根据题目中所给定义先求,再利用根与系数关系求m值.详解:由所给定义知,,若=0,解

20、得m=.点睛:一元二次方程的根的判别式是,=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.0说明方程有两个不同实数解,=0说明方程有两个相等实数解,0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.15、m3且m2【解析】试题解析:一元二次方程有实数根4-4(m-2)0且m-20解得:m3且m2.16、6【解析】作DEAB,交BA的延长线于E,作CFAB,可得DE=CF,且AC=AD,可证RtADERtAFC,可得AE=AF,DAE=BAC,根据tanBA

21、C=DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值再根据勾股定理求BC的长【详解】如图:作DEAB,交BA的延长线于E,作CFAB,ABCD,DEAB,CFABCF=DE,且AC=ADRtADERtAFCAE=AF,DAE=BACtanBAC=3tanDAE=3设AE=a,DE=3a在RtBDE中,BD2=DE2+BE252=(4+a)2+27a2解得a1=1,a2=-(不合题意舍去)AE=1=AF,DE=3=CFBF=AB-AF=3在RtBFC中,BC=6【点睛】本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三

22、角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可三、解答题(共8题,共72分)17、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=50,a=500.2=10,b=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(510+618+714+88)50=32050=6.4(本)(4)

23、该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)1200=528(人)点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型18、【小题1】 见解析 【小题2】 见解析 【小题3】 【解析】证明:(1)连接OFFH切O于点FOFFH 1分BC | | FHOFBC 2分BF=CF 3分BAF=CAF 即AF平分BAC4分(2) CAF=CBF又CAF=BAFCBF=BAF 6分BD平分ABCABD=CBDBAF+ABD=CBF+CBD即FBD=FDB 7分BF=DF 8分(3) BFE=AFB FB

24、E=FABBEFABF 9分即BF2=EFAF 10分EF=4 DE=3 BF=DF =4+3=7 AF=AD+7即4(AD+7)=49 解得AD=19、 (1) AB的解析式是y=-x+1点B(3,0)(2)n-1;(3) (3,4)或(5,2)或(3,2)【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AMPD,垂足为M,求得AM的长,即可求得BPD和PAB的面积,二者的和即可求得;(3)当SABP=2时,n-1=2,解得n=2,则OBP=45,然后分A、B、P分别是直角顶点求解试题解析:(1)y

25、=-x+b经过A(0,1),b=1,直线AB的解析式是y=-x+1当y=0时,0=-x+1,解得x=3,点B(3,0)(2)过点A作AMPD,垂足为M,则有AM=1,x=1时,y=-x+1=,P在点D的上方,PD=n-,SAPD=PDAM=1(n-)=n-由点B(3,0),可知点B到直线x=1的距离为2,即BDP的边PD上的高长为2,SBPD=PD2=n-,SPAB=SAPD+SBPD=n-+n-=n-1;(3)当SABP=2时,n-1=2,解得n=2,点P(1,2)E(1,0),PE=BE=2,EPB=EBP=45第1种情况,如图1,CPB=90,BP=PC,过点C作CN直线x=1于点NCP

26、B=90,EPB=45,NPC=EPB=45又CNP=PEB=90,BP=PC,CNPBEP,PN=NC=EB=PE=2,NE=NP+PE=2+2=4,C(3,4)第2种情况,如图2PBC=90,BP=BC,过点C作CFx轴于点FPBC=90,EBP=45,CBF=PBE=45又CFB=PEB=90,BC=BP,CBFPBEBF=CF=PE=EB=2,OF=OB+BF=3+2=5,C(5,2)第3种情况,如图3,PCB=90,CP=EB,CPB=EBP=45,在PCB和PEB中,PCBPEB(SAS),PC=CB=PE=EB=2,C(3,2)以PB为边在第一象限作等腰直角三角形BPC,点C的坐

27、标是(3,4)或(5,2)或(3,2)考点:一次函数综合题20、2.【解析】试题分析:由勾股定理的逆定理证明ADC是直角三角形,C=90,再由勾股定理求出BC,得出BD,即可得出结果解:在ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,ADC是直角三角形,C=90,在RtABC中,BC=16,BD=BCDC=169=7,ABD的面积=712=221、(1)(2)(3)【解析】试题分析:(1)结合图形可得矩形B的长可表示为:a+b,宽可表示为:a-b,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先

28、表示出整个矩形的面积,然后代入计算即可试题解析:(1)矩形B的长可表示为:a+b,宽可表示为:a-b,每个B区矩形场地的周长为:2(a+b+a-b)=4a;(2)整个矩形的长为a+a+b=2a+b,宽为:a+a-b=2a-b,整个矩形的周长为:2(2a+b+2a-b)=8a;(3)矩形的面积为:S=(2a+b)(2a-b)= ,把,代入得,S=4202-102=4400-100=1500.点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽22、1【解析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.【详解】解:(2)=x232x

29、+2=x22x1,x2x4=0,x22x=8,原式=81=1【点睛】分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.23、(1)顶点(-2,-1) A (-1,0); (2)y=(x-2)2+1; (3) y=x2-x+3, ,y=x2-4x+3, .【解析】(1)将点B和点C代入求出抛物线L即可求解.(2)将抛物线L化顶点式求出顶点再根据关于原点对称求出即可求解.(3)将使得PAC为等腰直角三角形,作出所有点P的可能性,求出代入即可求解.【详解】(1)将点B(-3,0),C(0,3)代入抛物线得:,解得,则抛物线.

30、抛物线与x轴交于点A, ,A (-1,0),抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1).(2)抛物线L化顶点式可得,由此可得顶点坐标顶点(-2,-1)抛物线L1的顶点与抛物线L的顶点关于原点对称,对称顶点坐标为(2,1),即将抛物线向右移4个单位,向上移2个单位.(3) 使得PAC为等腰直角三角形,作出所有点P的可能性.是等腰直角三角形,求得.,同理得,由题意知抛物线并将点代入得:.【点睛】本题主要考查抛物线综合题,讨论出P点的所有可能性是解题关键.24、(1),(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】(1)将点A和点C的坐标

31、代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标【详解】解:(1)将点A和点C的坐标代入抛物线的解析式得:,解得:b=2,c=1,抛物线的解析式为令,解得:,点B的坐标为(1,0)故答案为2;1;(1,0)(2)存在理由:如图所示:当ACP1=90由(1)可知点

32、A的坐标为(1,0)设AC的解析式为y=kx1将点A的坐标代入得1k1=0,解得k=1,直线AC的解析式为y=x1,直线CP1的解析式为y=x1将y=x1与联立解得,(舍去),点P1的坐标为(1,4)当P2AC=90时设AP2的解析式为y=x+b将x=1,y=0代入得:1+b=0,解得b=1,直线AP2的解析式为y=x+1将y=x+1与联立解得=2,=1(舍去),点P2的坐标为(2,5)综上所述,P的坐标是(1,4)或(2,5)(1)如图2所示:连接OD由题意可知,四边形OFDE是矩形,则OD=EF根据垂线段最短,可得当ODAC时,OD最短,即EF最短由(1)可知,在RtAOC中,OC=OA=1,ODAC,D是AC的中点又DFOC,DF=OC=,点P的纵坐标是,解得:x=,当EF最短时,点P的坐标是:(,)或(,)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁