江西省吉安市吉水县2023届中考数学考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:88308813 上传时间:2023-04-25 格式:DOC 页数:18 大小:963KB
返回 下载 相关 举报
江西省吉安市吉水县2023届中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
江西省吉安市吉水县2023届中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江西省吉安市吉水县2023届中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省吉安市吉水县2023届中考数学考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1如图,在ABC中,ACB=90, ABC=60, BD平分ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A3.5B3C4D4.52如图是某公园的一角,AOB=90,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CDOB,则图中休闲区(阴影部分)的面积是()A米2B米2C米2D米23已知O的半径为3,圆心O到直线L的距离为2,则直线L与O的位置关系是()A相交B相切C相离D不能确定4下列多边形中,内角和是一个三角形内角和的4倍的是()A四边形 B五边形 C六边形 D八边形5若关于x的一元二次方程x22x+m0没有实数根,

3、则实数m的取值是( )Am1Bm1Cm1Dm16下列图形中,属于中心对称图形的是()ABCD7在平面直角坐标系xOy中,若点P(3,4)在O内,则O的半径r的取值范围是( )A0r3Br4C0r5Dr58如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( ) ABCD9已知点A(12x,x1)在第二象限,则x的取值范围在数轴上表示正确的是()ABCD10下列各组数中,互为相反数的是()A1与(1)2B(1)2与1C2与D2与|2|二、填空题(本大题共6个小题,每小题3分,共18分)11因式分解:3x2-6xy+3y2=_12以矩形ABCD两条对

4、角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BEAC,垂足为E若双曲线y=(x0)经过点D,则OBBE的值为_13如图,已知直线y=x+4与双曲线y=(x0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_14如图,在ABC中,ACB=90,A=45,CDAB于点D,点P在线段DB上,若AP2-PB2=48,则PCD的面积为_.15函数y=的自变量x的取值范围是_16如图,AD=DF=FB,DEFGBC,则S:S:S=_.三、解答题(共8题,共72分)17(8分)如图,AB为O的直径,点E在O,C为弧BE的中点,过点C作直线CDAE

5、于D,连接AC、BC试判断直线CD与O的位置关系,并说明理由若AD=2,AC=,求O的半径18(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)19(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销

6、据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?20(8分)如图,在ABC 中,AB=AC,CD是ACB的平分线,DEBC,交AC于点 E求证:DE=CE 若CDE=35,求A 的度数 21(8分)如图,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形(1)试探究线段AE与CG的关系,并说明理由(2)如图若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=

7、1线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由当CDE为等腰三角形时,求CG的长22(10分)如图,中,于,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积23(12分)先化简,再求值:,其中a124为了解某校初二学生每周上网的时间,两位学生进行了抽样调查小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间小丽与小杰整理各自样本数据,如下表所示时间段(小时/周)小丽抽样(人数)小杰抽样(人数)01622121010231663482(1)你认为哪位学

8、生抽取的样本不合理?请说明理由专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:ACB90,ABC60,A10,BD平分ABC,ABDABC10,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B2、C【解析】连接OD,弧AB的半径OA长是6米,C是OA的中点,OC=OA=6=1AOB=90,CDOB,CDOA在RtOCD中,OD=6,OC=1,又,DOC=60(米2)故选C3、A【解析】试题分析:根据圆O的半径和,圆心O到直线L

9、的距离的大小,相交:dr;相切:d=r;相离:dr;即可选出答案解:O的半径为3,圆心O到直线L的距离为2,32,即:dr,直线L与O的位置关系是相交故选A考点:直线与圆的位置关系4、C【解析】利用多边形的内角和公式列方程求解即可【详解】设这个多边形的边数为n由题意得:(n2)180=4180解得:n=1答:这个多边形的边数为1故选C【点睛】本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键5、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C6、B【解析】A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A、将此图形绕任意

10、点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形故选B.【点睛】本题考查了轴对称与中心对称图形的概念: 中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【解析】先利用勾股定理计算出OP=1,然后根据点与圆的位置关系的判定方法得到r的范围【详解】点P的坐标为(3,4),OP1点P(3,4)在O内,OPr,即r1故选D【点睛】本题考查了点与圆的

11、位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系8、D【解析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|AP-BP|AB,延长AB交x轴于P,当P在P点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可【详解】把,代入反比例函数 ,得:,在中,由三角形的三边关系定理得:,延长交轴于,当在点时,即此时线段与线段之差达到最大,设直线的解析式是,把,的坐标代入得:,解得:,直线的解析式是,当时,即,故选D.

12、【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度9、B【解析】先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解:根据题意,得: ,解不等式,得:x,解不等式,得:x1,不等式组的解集为x1,故选:B【点睛】本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法10、A【解析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(1)21,1与1 互为相反数,正确;B、(1)21,故错误;C、2与互

13、为倒数,故错误;D、2|2|,故错误;故选:A【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.二、填空题(本大题共6个小题,每小题3分,共18分)11、3(xy)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x16xy+3y1=3(x11xy+y1)=3(xy)1考点:提公因式法与公式法的综合运用12、1【解析】由双曲线y=(x0)经过点D知SODF=k=,由矩形性质知SAOB=2SODF=,据此可得OABE=1,根据OA=OB可得答案【详解】如图,双曲线y=(x0)经过点D,SODF=k=,则SAOB=2SODF=,即OABE=,OABE=1,四边形ABCD

14、是矩形,OA=OB,OBBE=1,故答案为:1【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质13、-3【解析】设A(a, a+4),B(c, c+4),则解得: x+4=,即x2+4xk=0,直线y=x+4与双曲线y=相交于A、B两点,a+c=4,ac=-k,(ca)2=(c+a)24ac=16+4k,AB=,由勾股定理得:(ca)2+c+4(a+4)2=()2,2 (ca)2=8,(ca)2=4,16+4k =4,解得:k=3,故答案为3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等

15、,题目具有一定的代表性,综合性强,有一定难度.14、6【解析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=AB,由AP2-PB2=48,利用平方差公式及线段的和差公式将其变形可得CDPD=12,利用PCD的面积 =CDPD可得.【详解】解: 在ABC中,ACB=90,A=45,B=45,AC=BC,CDAB,AD=BD=CD=AB,AP2-PB2=48,(AP+PB)(AP-PB)=48,AB(AD+PD-BD+DP)=48,AB2PD=48,2CD2PD=48,CDPD=12, PCD的面积=CDPD=6.

16、故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一15、x且x1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可详解:根据题意得2x+10,x-10,解得x-且x1故答案为x-且x1点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单16、1:3:5【解析】DEFGBC,ADEAFGABC,AD=DF=FB,AD:AF:AB=1:2:3, =1:4:9,S:S:S=1:3:5.故答案为1:3:5.点睛: 本题考查了平行线的性质及相似三角形的性质相似三角形的面积比等于

17、相似比的平方三、解答题(共8题,共72分)17、(1)直线CD与O相切;(2)O的半径为1.1【解析】(1)相切,连接OC,C为的中点,1=2,OA=OC,1=ACO,2=ACO,ADOC,CDAD,OCCD,直线CD与O相切;(2)连接CE,AD=2,AC=,ADC=90,CD=,CD是O的切线,=ADDE,DE=1,CE=,C为的中点,BC=CE=,AB为O的直径,ACB=90,AB=2半径为1.118、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公

18、式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.19、(1)y=5x2+110x+1200;(2)

19、 售价定为189元,利润最大1805元【解析】利润等于(售价成本)销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y(200x170)(40+5x)5x2+110x+1200;(2)y5x2+110x+12005(x11)2+1805,抛物线开口向下,当x11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键20、 (1)见解析;(2) 40.【解析】(1)根据角平分线的性质可得出BCD=ECD,由DEBC可得出EDC=BCD,进而可得出EDC=ECD,再利用

20、等角对等边即可证出DE=CE;(2)由(1)可得出ECD=EDC=35,进而可得出ACB=2ECD=70,再根据等腰三角形的性质结合三角形内角和定理即可求出A的度数【详解】(1)CD是ACB的平分线,BCD=ECDDEBC,EDC=BCD,EDC=ECD,DE=CE(2)ECD=EDC=35,ACB=2ECD=70AB=AC,ABC=ACB=70,A=1807070=40【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线解题的关键是:(1)根据平行线的性质结合角平分线的性质找出EDC=ECD;(2)利用角平分线的性质结合等腰三角形的性质求出ACB=ABC=7021、(1)AE=

21、CG,AECG,理由见解析;(2)位置关系保持不变,数量关系变为;理由见解析;当CDE为等腰三角形时,CG的长为或或【解析】试题分析:证明即可得出结论.位置关系保持不变,数量关系变为证明根据相似的性质即可得出.分成三种情况讨论即可.试题解析:(1) 理由是:如图1,四边形EFGD是正方形, 四边形ABCD是正方形, 即 (2)位置关系保持不变,数量关系变为 理由是:如图2,连接EG、DF交于点O,连接OC,四边形EFGD是矩形, Rt中,OG=OF,Rt中, D、E、F、C、G在以点O为圆心的圆上, DF为的直径, EG也是的直径,ECG=90,即 由知:设 分三种情况:(i)当时,如图3,过

22、E作于H,则EHAD, 由勾股定理得: (ii)当时,如图1,过D作于H, (iii)当时,如图5, 综上所述,当为等腰三角形时,CG的长为或或点睛:两组角对应,两三角形相似.22、 (1)证明见解析;(2).【解析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S【详解】解:(1)ADBC,点E、F分别是AB、AC的中点,RtABD中,DE=AB=AE,RtACD中,DF=

23、AC=AF,又AB=AC,点E、F分别是AB、AC的中点,AE=AF,AE=AF=DE=DF,四边形AEDF是菱形;(2)如图,AB=AC=BC=10,EF=5,AD=5,菱形AEDF的面积S=EFAD55【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半23、-1【解析】原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值【详解】解:原式2(a3),当a1时,原式1【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键24、(1)小丽;(2)80【解析】解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性(2)答:该校全体初二学生中有80名同学应适当减少上网的时间

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁