《浙江省杭州市临安市达标名校2022-2023学年毕业升学考试模拟卷数学卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省杭州市临安市达标名校2022-2023学年毕业升学考试模拟卷数学卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1据调查,某班20为女同学所穿鞋子的尺码如表所示,尺码(码)3435363738人数251021则鞋子尺码的众数和中位数分别是( )A35码,35码B35码,36码C
2、36码,35码D36码,36码2的倒数是( )AB3CD3下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D=94如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tanBAC的值为()AB1CD5如图,ABC中,DEBC,AE2cm,则AC的长是()A2cmB4cmC6cmD8cm6下列哪一个是假命题()A五边形外角和为360B切线垂直于经过切点的半径C(3,2)关于y轴的对称点为(3,2)D抛物线y=x24x+2017对称轴为直线x=277的相反数是( )A7B7CD8如图所示,将含有30角的三角板的直角顶点放在相互平行的两条直线其中一条上,若1=35,则2的度数为
3、()A10B20C25D309不等式组的解集是()A1x4Bx1或x4C1x4D1x410如图,已知正五边形内接于,连结,则的度数是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11若关于x、y的二元一次方程组的解满足xy0,则m的取值范围是_12某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg13如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则O的半径为_14计算:_.15如图,CE是ABCD的边AB的垂直平分线,垂足为点O,CE与DA的
4、延长线交于点E连接AC,BE,DO,DO与AC交于点F,则下列结论:四边形ACBE是菱形;ACDBAE;AF:BE2:1;S四边形AFOE:SCOD2:1其中正确的结论有_(填写所有正确结论的序号)16如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当ABM是等腰三角形时,M点的坐标为_17二次函数yax2+bx+c的图象如图所示,以下结论:abc0;4acb2;2a+b0;其顶点坐标为(,2);当x时,y随x的增大而减小;a+b+c0中,正确的有_(只填序号)三、解答题(共7小题,满分69分)18(10分)为落实党中央“长江大保护”新发展理念,我市持续
5、推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?19(5分)如图所示,直线y=2x+b与反比例函数y=交于点A、B,与x轴交于点C(1)若A(3,m)、B(1,n)直接写出不等式2x+b的解(2)求sinOCB的值(3)若CBCA=5,求直线AB的解析式20(8分)如图,以ABC的一边AB为直径作O, O与BC边的交点D恰好为BC的中点,过点D作O的切线交AC边于点E(1) 求
6、证:DEAC;(2) 连结OC交DE于点F,若,求的值21(10分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路甲勘测员在A处测得点O位于北偏东45,乙勘测员在B处测得点O位于南偏西73.7,测得AC=840m,BC=500m请求出点O到BC的距离参考数据:sin73.7,cos73.7,tan73.722(10分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收入和总支出计划各是多少万元?23(12分)如图,在四边形ABCD中,ABCD,ABC=ADC,DE垂直于对角线A
7、C,垂足是E,连接BE(1)求证:四边形ABCD是平行四边形;(2)若AB=BE=2,sinACD= ,求四边形ABCD的面积24(14分)已知如图,在ABC中,B45,点D是BC边的中点,DEBC于点D,交AB于点E,连接CE(1)求AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【详解】数据36出现了10次,次数最多,所以众数为36,一
8、共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)2=36.故选D.【点睛】考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.2、A【解析】解:的倒数是故选A【点睛】本题考查倒数,掌握概念正确计算是解题关键3、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、=9,正确故选D【点睛】此题主要考查了合
9、并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键4、B【解析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到ABC为等腰直角三角形,即可求出所求【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,ABC为等腰直角三角形,BAC=45,则tanBAC=1,故选B【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键5、C【解析】由可得ADEABC,再根据相似三角形的性质即可求得结果.【详解】ADEABCAC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键
10、是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.6、C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A选项中,“五边形的外角和为360”是真命题,故不能选A;B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;D选项中,“抛物线y=x24x+2017对称轴为直线x=2”是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线:
11、等数学知识,是正确解答本题的关键.7、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.8、C【解析】分析:如图,延长AB交CF于E,ACB=90,A=30,ABC=601=35,AEC=ABC1=25GHEF,2=AEC=25故选C9、D【解析】试题分析:解不等式可得:x1,解不等式可得:x4,则不等式组的解为1x4,故选D10、C【解析】根据多边形内角和定理、正五边形的性质求出ABC、CD=CB,根据等腰三角形的性质求出CBD,计算即可【详解】五边形为正五边形故选:C【点睛】本题考查的是正多边形和圆、多边
12、形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)180是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、m-1【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y0即可得到关于m的不等式,求得m的范围【详解】解:,+得1x+1y1m+4,则x+ym+1,根据题意得m+10,解得m1故答案是:m1【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式12、20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行
13、李的最大质量为20kg13、【解析】如图,作辅助线CF;证明CFAB(垂径定理的推论);证明ADAB,得到ADOC,ADECOE;得到AD:CO=DE:OE,求出CO的长,即可解决问题【详解】如图,连接CO并延长,交AB于点F;AC=BC,CFAB(垂径定理的推论);BD是O的直径,ADAB;设O的半径为r;ADOC,ADECOE,AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,5:r=3:(r-3),解得:r=,故答案为【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断1
14、4、【解析】根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可【详解】解:原式=【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍15、【解析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.【详解】四边形ABCD是平行四边形,ABCD,AB=CD,EC垂直平分AB,OA=OB=AB=DC,CDCE,OADC,=,AE=AD,OE=OC,OA=OB,OE=OC,四边形ACBE是平行四边形,AB
15、EC,四边形ACBE是菱形,故正确,DCE=90,DA=AE,AC=AD=AE,ACD=ADC=BAE,故正确,OACD,故错误,设AOF的面积为a,则OFC的面积为2a,CDF的面积为4a,AOC的面积=AOE的面积=1a,四边形AFOE的面积为4a,ODC的面积为6aS四边形AFOE:SCOD=2:1故正确.故答案是:【点睛】此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.16、(4,6),(82,6),(2,6)【解析】分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存
16、在符合题意的M的坐标【详解】解:当M为顶点时,AB长为底=8,M在DC中点上, 所以M的坐标为(4, 6),当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME=2所以M的坐标为(82,6);当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF=2所以M的坐标为(2,6);综上所述,M的坐标为(4,6),(82,6),(2,6);故答案为:(4,6),(82,6),(2,6)【点睛】本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.17、【解析】根据图象可判断,由x=1时,y0,可判断【详解】由图象可得,a0,c0,b0,=b
17、24ac0,对称轴为x=abc0,4acb2,当时,y随x的增大而减小故正确, 2a+b0,故正确,由图象可得顶点纵坐标小于2,则错误,当x=1时,y=a+b+c0,故错误故答案为:【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定三、解答题(共7小题,满分69分)18、1平方米【解析】设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论【详解】解:设原计划平均每天施工x平方米,则实际平均每
18、天施工1.2x平方米,根据题意得:=11,解得:x=500,经检验,x=500是原方程的解,1.2x=1答:实际平均每天施工1平方米【点睛】考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程19、(1) x3或0x1;(2);(3)y=2x2【解析】(1)不等式的解即为函数y=2x+b的图象在函数y=上方的x的取值范围可由图象直接得到(2)用b表示出OC和OF的长度,求出CF的长,进而求出sinOCB(3)求直线AB的解析式关键是求出b的值【详解】解:(1)如图:由图象得:不等式2x+b的解是x3或0x1;(2)设直线AB和y轴的交点为F当y=0时,x=,即OC=;当x=0时,y
19、=b,即OF=b,CF=,sinOCB=sinOCF=(3)过A作ADx轴,过B作BEx轴,则AC=AD=,BC=,ACBC=(yA+yB)=(xA+xB)=5,又2x+b=,所以2x2+bxk=0,b=5,b=,y=2x2【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性20、(1)证明见解析(2)【解析】(1)连接OD,根据三角形的中位线定理可求出ODAC,根据切线的性质可证明DEOD,进而得证(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解【详解】解:(1)连接OD . DE是
20、O的切线,DEOD,即ODE=90 . AB是O的直径, O是AB的中点.又D是BC的中点, .ODAC . DEC=ODE= 90 .DEAC . (2)连接AD . ODAC,.AB为O的直径, ADB= ADC =90 .又D为BC的中点,AB=AC. sinABC=, 设AD= 3x , 则AB=AC=4x, OD= 2x.DEAC, ADC= AED= 90.DAC= EAD, ADCAED. .21、点O到BC的距离为480m【解析】作OMBC于M,ONAC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可【详解】作OMBC于M
21、,ONAC于N,则四边形ONCM为矩形,ON=MC,OM=NC,设OM=x,则NC=x,AN=840x,在RtANO中,OAN=45,ON=AN=840x,则MC=ON=840x,在RtBOM中,BM=x,由题意得,840x+x=500,解得,x=480,答:点O到BC的距离为480m【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键22、今年的总收入为220万元,总支出为1万元【解析】试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设去年的总收入为x万元,总支出为y万元根
22、据题意,得,解这个方程组,得,(1+10%)x=220,(1-20%)y=1答:今年的总收入为220万元,总支出为1万元23、(1)证明见解析;(2)S平行四边形ABCD =3 【解析】试题分析:(1)根据平行四边形的性质得出ABC+DCB=180,推出ADC+BCD=180,根据平行线的判定得出ADBC,根据平行四边形的判定推出即可;(2)证明ABE是等边三角形,得出AE=AB=2,由直角三角形的性质求出CE和DE,得出AC的长,即可求出四边形ABCD的面积试题解析:(1)ABCD,ABC+DCB=180,ABC=ADC,ADC+BCD=180,ADBC,ABCD,四边形ABCD是平行四边形
23、;(2)sinACD=,ACD=60,四边形ABCD是平行四边形,ABCD,CD=AB=2,BAC=ACD=60,AB=BE=2,ABE是等边三角形,AE=AB=2,DEAC,CDE=9060=30,CE= CD=1,DE=CE=,AC=AE+CE=3,S平行四边形ABCD =2SACD =ACDE=324、(1)90;(1)AE1+EB1AC1,证明见解析【解析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EBEC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答【详解】解:(1)点D是BC边的中点,DEBC,DE是线段BC的垂直平分线,EBEC,ECBB45,AECECB+B90;(1)AE1+EB1AC1AEC90,AE1+EC1AC1,EBEC,AE1+EB1AC1【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键