江西省安远县第一中学2023年高三第三次测评数学试卷含解析.doc

上传人:lil****205 文档编号:88306932 上传时间:2023-04-25 格式:DOC 页数:22 大小:2.31MB
返回 下载 相关 举报
江西省安远县第一中学2023年高三第三次测评数学试卷含解析.doc_第1页
第1页 / 共22页
江西省安远县第一中学2023年高三第三次测评数学试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《江西省安远县第一中学2023年高三第三次测评数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省安远县第一中学2023年高三第三次测评数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示的程序框图输出的是126,则应为( )ABCD2已知等差数列an,则“a2a1”是“数列an为单调递增数列”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件3已知双曲线的左、右焦点分别为、,抛物线与双曲线

2、有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为( )A或B或C或D或4如图,中,点D在BC上,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,则,的大小关系是( )ABC,两种情况都存在D存在某一位置使得5已知三棱锥且平面,其外接球体积为( )ABCD6函数在上的最大值和最小值分别为( )A,-2B,-9C-2,-9D2,-27函数f(x)sin(wx)(w0,)的最小正周期是,若将该函数的图象向右平移个单位后得到的函数图象关于直线x对称,则函数f(x)的解析式为( )Af(x)sin(2x)Bf(x)sin(2x)Cf(x)sin(2x)Df(x)sin(2x)8我

3、国古代数学名著九章算术有一问题:“今有鳖臑(bi na),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A平方尺B平方尺C平方尺D平方尺9已知命题:R,;命题 :R,则下列命题中为真命题的是( )ABCD10已知,则的大小关系为ABCD11已知,若,则等于( )A3B4C5D612已知集合,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )AB或CD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为_14已知点是双曲线渐近线上的一点,则双曲线的离

4、心率为_15的二项展开式中,含项的系数为_16若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:18(12分)在极坐标系中,曲线的极坐标方程为(1)求曲线与极轴所在直线围成图形的面积;(2)设曲线与曲线交于,两点,求.19(12分)已知函数,.(1)讨论函数的单调性;(2)已知在处的切线与轴垂直,若方程有三个实数解、(),求证:.20(12分)已知函数.(1)讨论的单调性;(2)曲线在点处的切线斜率为.(i)求;(ii)若,求整数的最大值.21(12分)如图,在四面体中,.

5、(1)求证:平面平面;(2)若,求四面体的体积.22(10分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件S=2+22+21=121,故中应填n1故选B点评:算

6、法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误2、C【解析】试题分析:根据充分条件和必要条件的定义进行判断即可解:在等差数列an中,若a2a1,则d0,即数列an为单调递增数列,若数列an为单调递增数列,则a2a1,成立,即“a2a1”是“数列an为单调递增数列”充分必要条件,故选C考点:必要条件、充分条件与充要条件的判断3、D【解析】设,根据和抛物线性质得出,再根据双曲线性质得出,最后根据余弦定理列方程得出

7、、间的关系,从而可得出离心率【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,则,为双曲线上的点,则,即,得,又,在中,由余弦定理可得,整理得,即,解得或.故选:D.【点睛】本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题4、A【解析】根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,设,则有,可得,;,;,综上可得,故选:【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平

8、5、A【解析】由,平面,可将三棱锥还原成长方体,则三棱锥的外接球即为长方体的外接球,进而求解.【详解】由题,因为,所以,设,则由,可得,解得,可将三棱锥还原成如图所示的长方体,则三棱锥的外接球即为长方体的外接球,设外接球的半径为,则,所以,所以外接球的体积.故选:A【点睛】本题考查三棱锥的外接球体积,考查空间想象能力.6、B【解析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在上的最大值和最小值.【详解】依题意,作出函数的图象如下所示;由函数图像可知,当时,有最大值,当时,有最小值.故选:B.【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.7

9、、D【解析】由函数的周期求得,再由平移后的函数图像关于直线对称,得到 ,由此求得满足条件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.8、A【解析】根据三视图

10、得出原几何体的立体图是一个三棱锥,将三棱锥补充成一个长方体,此长方体的外接球就是该三棱锥的外接球,由球的表面积公式计算可得选项.【详解】由三视图可得,该几何体是一个如图所示的三棱锥,为三棱锥外接球的球心,此三棱锥的外接球也是此三棱锥所在的长方体的外接球,所以为的中点, 设球半径为,则,所以外接球的表面积,故选:A【点睛】本题考查求几何体的外接球的表面积,关键在于由几何体的三视图得出几何体的立体图,找出外接球的球心位置和半径,属于中档题.9、B【解析】根据,可知命题的真假,然后对取值,可得命题 的真假,最后根据真值表,可得结果.【详解】对命题:可知,所以R,故命题为假命题命题 :取,可知所以R,

11、故命题为真命题所以为真命题故选:B【点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题.10、D【解析】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,即,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较这就必须掌握一些特殊方法在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,

12、又准确11、C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.12、C【解析】根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】解法一:曲线上任取一点,利

13、用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案.【详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故答案为:.【点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法

14、或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题.14、【解析】先表示出渐近线,再代入点,求出,则离心率易求.【详解】解:的渐近线是因为在渐近线上,所以,故答案为:【点睛】考查双曲线的离心率的求法,是基础题.15、【解析】写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.16、【解析】由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解【详解】,得,在等式两边平方得,解得.故答案为:.【点睛】本

15、题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)极大值,极小值;(2)详见解析.【解析】首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【详解】由题意得:定义域为,(1)当时,当和时,;当时,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:,即证:,设,令,则,在上单调递增,则由,

16、从而有:.【点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.18、(1);(2)【解析】(1)利用互化公式,将曲线的极坐标方程化为直角坐标方程,得出曲线与极轴所在直线围成的图形是一个半径为1的圆周及一个两直角边分别为1与的直角三角形,即可求出面积;(2)联立方程组,分别求出和的坐标,即可求出.【详解】解:(1)由于的极坐标方程为,根据互化公式得,曲线的直角坐标方程为:当时,当时,则曲线与极轴所在直线围成的图形,是一个半径为1的圆周及一个两直角边

17、分别为1与的直角三角形,围成图形的面积.(2)由得,其直角坐标为,化直角坐标方程为,化直角坐标方程为,.【点睛】本题考查利用互化公式将极坐标方程化为直角坐标方程,以及联立方程组求交点坐标,考查计算能力.19、(1)当时, 在单调递增,当时,单调递增区间为,单调递减区间为(2)证明见解析【解析】(1)先求解导函数,然后对参数分类讨论,分析出每种情况下函数的单调性即可;(2)根据条件先求解出的值,然后构造函数分析出之间的关系,再构造函数分析出之间的关系,由此证明出.【详解】(1),当时,恒成立,则在单调递增当时,令得,解得,又,当时,单调递增;当时,单调递减;当时,单调递增.(2)依题意得,则由(

18、1)得,在单调递增,在上单调递减,在上单调递增若方程有三个实数解,则法一:双偏移法设,则在上单调递增,即,其中,在上单调递减,即设,在上单调递增,即,其中,在上单调递增,即.法二:直接证明法,在上单调递增,要证,即证设,则在上单调递减,在上单调递增,即(注意:若没有证明,扣3分)关于的证明:(1)且时,(需要证明),其中(2),即,则【点睛】本题考查函数与倒导数的综合应用,难度较难.(1)对于含参函数单调性的分析,可通过分析参数的临界值,由此分类讨论函数单调性;(2)利用导数证明不等式常用方法:构造函数,利用新函数的单调性确定函数的最值,从而达到证明不等式的目的.20、(1)在上增;在上减;(

19、2)(i);(ii)2【解析】(1)求导求出,对分类讨论,求出的解,即可得出结论;(2)(i)由,求出的值;(ii)由(i)得所求问题转化为,恒成立,设,只需,根据的单调性,即可求解.【详解】(1)当时,即在上增;当时,即在上增;在上减;(2)(i),.(),即,即,只需.当时,在单调递增,所以满足题意;当时,所以在上减,在上增,令,.在单调递减,所以所以在上单调递减,综上可知,整数的最大值为.【点睛】本题考查函数导数的综合应用,涉及函数的单调性、导数的几何意义、极值最值、不等式恒成立,考查分类讨论思想,属于中档题.21、(1)证明见解析;(2).【解析】(1)取中点,连接,根据等腰三角形的性

20、质得到,利用全等三角形证得,由此证得平面,进而证得平面平面.(2)由(1)知平面,即是四面体的面上的高,结合锥体体积公式,求得四面体的体积.【详解】(1)证明:如图,取中点,连接,由则,则,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面体的面上的高,且.在中,由勾股定理易知故四面体的体积【点睛】本小题主要考查面面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于中档题.22、(1);(2)或【解析】(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,

21、结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,设切点为,故,故,则;令,故当时,当时,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁