《湖南省株洲市荷塘区达标名校2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《湖南省株洲市荷塘区达标名校2023年中考数学对点突破模拟试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)12017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )A305.5104 B3.055102 C3
2、.0551010 D3.05510112如图,五边形ABCDE中,ABCD,1、2、3分别是BAE、AED、EDC的外角,则1+2+3等于A90B180C210D2703下列4个点,不在反比例函数图象上的是( )A( 2,3)B(3,2)C(3,2)D( 3,2)4若关于x的一元二次方程(k1)x2+2x2=0有两个不相等的实数根,则k的取值范围是()AkBkCk且k1Dk且k15如图,已知点A、B、C、D在O上,圆心O在D内部,四边形ABCO为平行四边形,则DAO与DCO的度数和是()A60B45C35D306关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-
3、2C2D-7吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为()A27.1102 B2.71103 C2.71104 D0.2711058把一副三角板如图(1)放置,其中ACBDEC90,A41,D30,斜边AB4,CD1把三角板DCE绕着点C顺时针旋转11得到D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )ABCD49如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则DEF的面积与BAF的面积之比为( )A3:4B9:16C9:1D3:110如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0
4、,4),将ABO绕点B逆时针旋转60后得到ABO,若函数y=(x0)的图象经过点O,则k的值为()A2B4C4D811已知一个多边形的内角和是外角和的3倍,则这个多边形是()A五边形B六边形C七边形D八边形12如图,在中,的垂直平分线交于点,垂足为如果,则的长为( )A2B3C4D6二、填空题:(本大题共6个小题,每小题4分,共24分)13.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角ACB=120, 则此圆锥高 OC 的长度是_14若不等式(a+1)xa+1的解集是x1,则a的取值范围是_.15如图,在ABC中,AB5,AC4,BC3,按以下步骤作图:以A为圆心,任意长为半径作弧
5、,分别交AB、AC于点M、N;分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;作射线AE;以同样的方法作射线BF,AE交BF于点O,连接OC,则OC_.16计算:()22cos60=_17如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则EFD_18已知反比例函数y=,当x0时,y随x增大而减小,则m的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整(1)函数y=+
6、1的图象可以由我们熟悉的函数 的图象向上平移 个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是: ;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是 20(6分)如图所示,在ABCD中,E是CD延长线上的一点,BE与AD交于点F,DECD.(1)求证:ABFCEB;(2)若DEF的面积为2,求ABCD的面积21(6分)如图,已知AOB=45,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长22(8分)已知:四边形ABCD是平行四边形,点O是对角线AC、B
7、D的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由23(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元求A,B两种品牌的足球的单价求该校购买20个A品牌的足球和2个B品牌的足球的总费用24(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得APl作法:如图在直线l上任取一点B(AB与l不垂直),以
8、点A为圆心,AB为半径作圆,与直线l交于点C连接AC,AB,延长BA到点D;作DAC的平分线AP所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:ABAC,ABCACB (填推理的依据)DAC是ABC的外角,DACABC+ACB (填推理的依据)DAC2ABCAP平分DAC,DAC2DAPDAPABCAPl (填推理的依据)25(10分)计算:|2|+()12cos4526(12分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB求证:ABE=EAD;若AEB=2ADB,求证:四边形ABCD是菱形2
9、7(12分)如图所示,内接于圆O,于D;(1)如图1,当AB为直径,求证:;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,求CF的长度参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:305.5亿=3.0551故选C2、B【解析】试题分析:如图,如图,过点E作EFAB,ABCD,EFABCD,1=4,3=5,1+2+3=2+4+5=180,故选B3、D【解析】分析:根据得k=xy=-6,所以只要
10、点的横坐标与纵坐标的积等于-6,就在函数图象上解答:解:原式可化为:xy=-6,A、2(-3)=-6,符合条件;B、(-3)2=-6,符合条件;C、3(-2)=-6,符合条件;D、32=6,不符合条件故选D4、C【解析】根据题意得k-10且=2-4(k-1)(-2)0,解得:k且k1故选C【点睛】本题考查了一元二次方程ax+bx+c=0(a0)的根的判别式=b-4ac,关键是熟练掌握:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根5、A【解析】试题解析:连接OD,四边形ABCO为平行四边形,B=AOC,点A. B. C.D在O上,由圆周角定理得, 解得,
11、OA=OD,OD=OC,DAO=ODA,ODC=DCO,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.6、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小7、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n
12、是正数;当原数的绝对值1时,n是负数【详解】将27100用科学记数法表示为:. 2.71104.故选:C.【点睛】本题考查科学记数法表示较大的数。8、A【解析】试题分析:由题意易知:CAB=41,ACD=30若旋转角度为11,则ACO=30+11=41AOC=180-ACO-CAO=90在等腰RtABC中,AB=4,则AO=OC=2在RtAOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=故选A.考点: 1.旋转;2.勾股定理.9、B【解析】可证明DFEBFA,根据相似三角形的面积之比等于相似比的平方即可得出答案【详解】四边形ABCD为平行四边形,DCAB,DFEBFA,DE:EC=3
13、:1,DE:DC=3:4,DE:AB=3:4,SDFE:SBFA=9:1故选B10、C【解析】根据题意可以求得点O的坐标,从而可以求得k的值【详解】点B的坐标为(0,4),OB=4,作OCOB于点C,ABO绕点B逆时针旋转60后得到ABO,OB=OB=4,OC=4sin60=2,BC=4cos60=2,OC=2,点O的坐标为:(2,2),函数y=(x0)的图象经过点O,2=,得k=4,故选C【点睛】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答11、D【解析】根据多边形的外角和是360,以及多边形的内角和定理即可求解【详解】设多边
14、形的边数是n,则(n2)180=3360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.12、C【解析】先利用垂直平分线的性质证明BE=CE=8,再在RtBED中利用30角的性质即可求解ED【详解】解:因为垂直平分,所以,在中,则;故选:C【点睛】本题主要考查了线段垂直平分线的性质、30直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等二、填空题:(本大题共6个小题,每小题4分,共24分)13、4【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论【详解】设圆锥底面圆的半径为 r,AC=6,
15、ACB=120,=2r, r=2,即:OA=2,在 RtAOC 中,OA=2,AC=6,根据勾股定理得,OC=4, 故答案为4【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键14、a1【解析】不等式(a+1)xa+1两边都除以a+1,得其解集为x1,a+10,解得:a1,故答案为a1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.15、【解析】直接利用勾股定理的
16、逆定理结合三角形内心的性质进而得出答案【详解】过点O作ODBC,OGAC,垂足分别为D,G,由题意可得:O是ACB的内心,AB=5,AC=4,BC=3,BC2+AC2=AB2,ABC是直角三角形,ACB=90,四边形OGCD是正方形,DO=OG=1,CO=故答案为【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键16、3【解析】按顺序先进行负指数幂的运算、代入特殊角的三角函数值,然后再进行减法运算即可.【详解】()22cos60=4-2=3,故答案为3.【点睛】本题考查了实数的运算,涉及了负指数幂、特殊角的三角函数值,熟练掌握相关的运算法则是解题的关键.17、45【解析
17、】由四边形ABCD为正方形及半径相等得到ABAFAD,ABDADB45,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到ABFADF135,进而确定出1245,由EFD为三角形DEF的外角,利用外角性质即可求出EFD的度数【详解】正方形ABCD,AF,AB,AD为圆A半径,ABAFAD,ABDADB45,ABFAFB,AFDADF,四边形ABFD内角和为360,BAD90,ABFAFBAFDADF270,ABFADF135,ABDADB45,即ABDADB90,121359045,EFD为DEF的外角,EFD1245故答案为45【点睛】
18、此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键18、m1【解析】分析:根据反比例函数y=,当x0时,y随x增大而减小,可得出m10,解之即可得出m的取值范围详解:反比例函数y=,当x0时,y随x增大而减小,m10,解得:m1 故答案为m1点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m10是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1),1;(2)与x轴交于(1,0),与y轴没交点;(3)答案不唯一,如:y=+1.【解析】(1)根据函数图象的平移规律,可得答案;(2)根据自
19、变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案【详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(1,0),与y轴没交点,故答案为:与x轴交于(1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=+1, 答案不唯一,故答案为:y=+1【点睛】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键20、(1)见解析;(2)16【解析】试题分析:(1
20、)要证ABFCEB,需找出两组对应角相等;已知了平行四边形的对角相等,再利用ABCD,可得一对内错角相等,则可证(2)由于DEFEBC,可根据两三角形的相似比,求出EBC的面积,也就求出了四边形BCDF的面积同理可根据DEFAFB,求出AFB的面积由此可求出ABCD的面积试题解析:(1)证明:四边形ABCD是平行四边形A=C,ABCDABF=CEBABFCEB(2)解:四边形ABCD是平行四边形ADBC,AB平行且等于CDDEFCEB,DEFABFDE=CD,SDEF=2SCEB=18,SABF=8,S四边形BCDF=SBCE-SDEF=16S四边形ABCD=S四边形BCDF+SABF=16+
21、8=1考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质21、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.22、(1)见解析;(2)AFCE,见解析.
22、【解析】(1)直接利用全等三角三角形判定与性质进而得出FOCEOA(ASA),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案【详解】(1)证明:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,AO=CO,DCAB,DC=AB,FCA=CAB,在FOC和EOA中,FOCEOA(ASA),FC=AE,DC-FC=AB-AE,即DF=EB;(2)AFCE,理由:FC=AE,FCAE,四边形AECF是平行四边形,AFCE【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出FOCEOA(ASA)是解题关键23、(1)一个A品牌的足球需90元,则一个B品
23、牌的足球需100元;(2)1【解析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可【详解】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:2040+2100=1(元)答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元考点:二元一次方程组的应用24、 (1)详见解析;(2)(等边对等角),(三角形外角性质),(
24、同位角相等,两直线平行)【解析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得【详解】解:(1)如图所示,直线AP即为所求(2)证明:ABAC,ABCACB(等边对等角),DAC是ABC的外角,DACABC+ACB(三角形外角性质),DAC2ABC,AP平分DAC,DAC2DAP,DAPABC,APl(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行)【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定25、+1【解析】分析:直
25、接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案详解:原式=22+32 =2+1 =+1点睛:本题主要考查了实数运算,正确化简各数是解题的关键26、(1)证明见解析;(2)证明见解析【解析】(1)根据平行四边形的对边互相平行可得ADBC,再根据两直线平行,内错角相等可得AEB=EAD,根据等边对等角可得ABE=AEB,即可得证(2)根据两直线平行,内错角相等可得ADB=DBE,然后求出ABD=ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可【详解】证明:(1)在平行四边形ABCD中,ADBC,AEB=EADAE=AB,ABE=AEBAB
26、E=EAD(2)ADBC,ADB=DBEABE=AEB,AEB=2ADB,ABE=2ADBABD=ABEDBE=2ADBADB=ADBAB=AD又四边形ABCD是平行四边形,四边形ABCD是菱形27、(1)见解析;(2)成立;(3)【解析】(1)根据圆周角定理求出ACB=90,求出ADC=90,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出BOC=2A,求出OBC=90-A和ACD=90-A即可;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交O于N,连接CN、AN,求出关于a的方程,再求出a即可【详解】(1)证明:AB为直径,于D,;(2)成立,证明:连接OC,由圆周角定理得:,;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,根据圆周角定理得:,由三角形内角和定理得:,同理,在AD上取,延长CG交AK于M,则,延长KO交O于N,连接CN、AN,则,四边形CGAN是平行四边形,作于T,则T为CK的中点,O为KN的中点,由勾股定理得:,作直径HS,连接KS,由勾股定理得:,设,解得:,【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大