《2023届浙江省杭州市萧山区城厢片重点达标名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届浙江省杭州市萧山区城厢片重点达标名校中考二模数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BEEDDC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s若点P、Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2),已知y与t之
2、间的函数图象如图2所示给出下列结论:当0t10时,BPQ是等腰三角形;SABE=48cm2;14t22时,y=1101t;在运动过程中,使得ABP是等腰三角形的P点一共有3个;当BPQ与BEA相似时,t=14.1其中正确结论的序号是()ABCD2如图,直线a,b被直线c所截,若ab,1=50,3=120,则2的度数为()A80B70C60D503如图,已知,用尺规作图作第一步的作法以点为圆心,任意长为半径画弧,分别交,于点,第二步的作法是( )A以点为圆心,长为半径画弧,与第1步所画的弧相交于点B以点为圆心,长为半径画弧,与第1步所画的弧相交于点C以点为圆心,长为半径画弧,与第1步所画的弧相交
3、于点D以点为圆心,长为半径画弧,与第1步所画的弧相交于点4如图,抛物线yax2bxc(a0)的对称轴为直线x1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2bxc0的两个根是x11,x23;3ac0;当y0时,x的取值范围是1x3;当x0时,y随x增大而增大其中结论正确的个数是( )A4个B3个C2个D1个5下列图形中,既是中心对称图形,又是轴对称图形的是( )ABCD6下列运算正确的是( )ABCD7如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形DECB,若DEBC,四边形DECB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD8
4、在平面直角坐标系中,点A的坐标是(1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A(0,)B(,0)C(0,2)D(2,0)9若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a110如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A10B15C20D30二、填空题(本大题共6个小题,每小题3分,共18分)11圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_12在矩形ABCD中,对角线AC、BD相交于点O,AOB60,AC6cm,则AB的长是_13我国经典数学著作九章算
5、术中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 14如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_.15如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得
6、的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_16已知点P在一次函数y=kx+b(k,b为常数,且k0,b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上(1)k的值是 ;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CEx轴于点E,记S1为四边形CEOB的面积,S2为OAB的面积,若=,则b的值是 三、解答题(共8题,共72分)17(8分)某商店销售两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需280元;购买3个A品牌和1个B品牌的计算器共
7、需210元()求这两种品牌计算器的单价;()开学前,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的九折销售,B品牌计算器10个以上超出部分按原价的七折销售设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1,y2关于x的函数关系式()某校准备集体购买同一品牌的计算器,若购买计算器的数量超过15个,购买哪种品牌的计算器更合算?请说明理由18(8分)某商场经营某种品牌的童装,购进时的单价是60元根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件写出销售量y件与销售单价x元之间的函数关系式;写
8、出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?19(8分)先化简,然后从x的范围内选取一个合适的整数作为x的值代入求值20(8分)在平面直角坐标系中,一次函数(a0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH轴,垂足为点H,OH=3,tanAOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求AHO的周长.21(8分)先化简,再求值:,其中,22(10分)在ABC中,AB=ACBC,点D和点A在直线
9、BC的同侧,BD=BC,BAC=,DBC=,且+=110,连接AD,求ADB的度数(不必解答)小聪先从特殊问题开始研究,当=90,=30时,利用轴对称知识,以AB为对称轴构造ABD的轴对称图形ABD,连接CD(如图1),然后利用=90,=30以及等边三角形等相关知识便可解决这个问题请结合小聪研究问题的过程和思路,在这种特殊情况下填空:DBC的形状是 三角形;ADB的度数为 在原问题中,当DBCABC(如图1)时,请计算ADB的度数;在原问题中,过点A作直线AEBD,交直线BD于E,其他条件不变若BC=7,AD=1请直接写出线段BE的长为 23(12分)如图,已知A(4,n),B(2,4)是一次
10、函数ykx+b的图象和反比例函数y的图象的两个交点求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围24先化简,再求值:,其中a是方程a(a+1)0的解参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据题意,得到P、Q分别同时到达D、C可判断,分段讨论PQ位置后可以判断,再由等腰三角形的分类讨论方法确定,根据两个点的相对位置判断点P在DC上时,存在BPQ与BEA相似的可能性,分类讨论计算即可【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故正确则AE=104=6t=10
11、时,BPQ的面积等于 AB=DC=8故 故错误当14t22时, 故正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则A、B及AB垂直平分线与点P运行路径的交点是P,满足ABP是等腰三角形此时,满足条件的点有4个,故错误BEA为直角三角形只有点P在DC边上时,有BPQ与BEA相似由已知,PQ=22t当或时,BPQ与BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故正确故选:D【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想2、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【
12、详解】解:ab,1=50,4=50,3=120,2+4=120,2=120-50=70故选B【点睛】此题主要考查了平行线的性质,正确得出4的度数是解题关键3、D【解析】根据作一个角等于已知角的作法即可得出结论【详解】解:用尺规作图作AOC=2AOB的第一步是以点O为圆心,以任意长为半径画弧,分别交OA、OB于点E、F,第二步的作图痕迹的作法是以点F为圆心,EF长为半径画弧故选:D【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键4、B【解析】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为
13、(3,0),方程ax2+bx+c=0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,y=0,即ab+c=0,a+2a+c=0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab
14、0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点5、C【解析】根据中心对称图形和轴对称图形对各选项分析判断即可得解【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形
15、两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.7、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,
16、解题的关键是熟练掌握基本知识,属于中考常考题型8、A【解析】直接根据AOCCOB得出OC2=OAOB,即可求出OC的长,即可得出C点坐标【详解】如图,连结AC,CB.依AOCCOB的结论可得:OC2=OAOB,即OC2=13=3,解得:OC=或 (负数舍去),故C点的坐标为(0, ).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.9、B【解析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.【详解】解:x的不等式组恰有3个整数解,整数解为1,0,-1,-2a-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别
17、解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.10、B【解析】由三视图可知此几何体为圆锥,圆锥的底面半径为3,母线长为5,圆锥的底面周长等于圆锥的侧面展开扇形的弧长,圆锥的底面周长=圆锥的侧面展开扇形的弧长=2r=23=6,圆锥的侧面积=lr=65=15,故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、15p【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=235=15故答案为15考点:圆锥的计算12、3cm【解析】根据矩形的对角线相等且互相平分可得OAOBODOC,由AO
18、B60,判断出AOB是等边三角形,根据等边三角形的性质求出AB即可【详解】解:四边形ABCD是矩形,AC6cmOAOCOBOD3cm,AOB60,AOB是等边三角形,ABOA3cm,故答案为:3cm【点睛】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分13、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用14、 (,)【解析】如图,过点Q作QDOA于点D,QDO=90.四边形OABC是正方形,且边长为2,OQ=OC,Q
19、OA=45,OQ=OC=2,ODQ是等腰直角三角形,OD=OQ=.点Q的坐标为.15、【解析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用16、(1)-2;(2)【解
20、析】(1)设点P的坐标为(m,n),则点Q的坐标为(m1,n+2),依题意得:,解得:k=2.故答案为2.(2)BOx轴,CEx轴,BOCE,AOBAEC.又, 令一次函数y=2x+b中x=0,则y=b,BO=b;令一次函数y=2x+b中y=0,则0=2x+b,解得:x=,即AO=.AOBAEC,且,,AE=,AO=,CE=BO=b,OE=AEAO=.OECE=|4|=4,即=4,解得:b=,或b= (舍去).故答案为.三、解答题(共8题,共72分)17、(1)A种品牌计算器50元/个,B种品牌计算器60元/个;(2)y1=45x, y2= ;(3)详见解析.【解析】(1)根据题意列出二元一次
21、方程组并求解即可;(2)按照“购买所需费用=折扣单价数量”列式即可,注意B品牌计算器的采购要分0x10和x10两种情况考虑;(3)根据上问所求关系式,分别计算当x15时,由y1=y2、y1y2、y1y2确定其分别对应的销量范围,从而确定方案.【详解】()设A、B两种品牌的计算器的单价分别为a元、b元,根据题意得,解得:,答:A种品牌计算器50元/个,B种品牌计算器60元/个;()A品牌:y1=50x0.9=45x;B品牌:当0x10时,y2=60x,当x10时,y2=1060+60(x10)0.7=42x+180,综上所述:y1=45x,y2=;()当y1=y2时,45x=42x+180,解得
22、x=60,即购买60个计算器时,两种品牌都一样;当y1y2时,45x42x+180,解得x60,即购买超过60个计算器时,B品牌更合算;当y1y2时,45x42x+180,解得x60,即购买不足60个计算器时,A品牌更合算,当购买数量为15时,显然购买A品牌更划算.【点睛】本题考查了二元一次方程组的应用.18、(1);(2);(3)最多获利4480元.【解析】(1)销售量y为200件加增加的件数(80x)20;(2)利润w等于单件利润销售量y件,即W=(x60)(20x+1800),整理即可;(3)先利用二次函数的性质得到w=20x2+3000x108000的对称轴为x=75,而20x+180
23、0240,x78,得76x78,根据二次函数的性质得到当76x78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润【详解】(1)根据题意得,y=200+(80x)20=20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=20x+1800(60x80);(2)W=(x60)y=(x60)(20x+1800)=20x2+3000x108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=20x2+3000x108000;(3)根据题意得,20x+1800240,解得x78,76x78,w=20x2+3000x108000,
24、对称轴为x=75,a=200,抛物线开口向下,当76x78时,W随x的增大而减小,x=76时,W有最大值,最大值=(7660)(2076+1800)=4480(元)所以商场销售该品牌童装获得的最大利润是4480元【点睛】二次函数的应用19、 【解析】根据分式的减法和除法可以化简题目中的式子,然后从x的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题【详解】解:(x+1)=,当x=2时,原式= 【点睛】本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法20、(1)一次函数为,反比例函数为;(2)AHO的周长为12【解析】分析:(1)根据正切函数可得AH
25、=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)tanAOH= AH=OH=4 A(-4,3),代入,得k=-43=-12 反比例函数为 m=6 B(6,-2)=,b=1 一次函数为 (2) AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式21、9【解析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然
26、后将x、y的值代入化简后的式子即可解答本题【详解】 当,时,原式 【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法22、(1)DBC是等边三角形,ADB=30(1)ADB=30;(3)7+或7【解析】(1)如图1中,作ABDABD,BDBD,连接CD,AD,由ABDABD,推出DBC是等边三角形;借助的结论,再判断出ADBADC,得ADBADC,由此即可解决问题(1)当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1)(3)第种情况:当60110时,如图3中,作ABDABD,BDBD,连接CD,AD,证明方法类似(1),最后利用含30度角
27、的直角三角形求出DE,即可得出结论;第种情况:当060时,如图4中,作ABDABD,BDBD,连接CD,AD证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论【详解】(1)如图1中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,BAC=90,ABC=45,DBC=30,ABD=ABCDBC=15,在ABD和ABD中,ABDABD,ABD=ABD=15,ADB=ADB,DBC=ABD+ABC=60,BD=BD,BD=BC,BD=BC,DBC是等边三角形,DBC是等边三角形,DB=DC,BDC=60,在ADB和ADC中,ADBADC,ADB=ADC,ADB=BDC=3
28、0,ADB=30(1)DBCABC,60110,如图3中,作ABD=ABD,BD=BD,连接CD,AD,AB=AC,ABC=ACB,BAC=,ABC=(180)=90,ABD=ABCDBC=90,同(1)可证ABDABD,ABD=ABD=90,BD=BD,ADB=ADBDBC=ABD+ABC=90+90=180(+),+=110,DBC=60,由(1)可知,ADBADC,ADB=ADC,ADB=BDC=30,ADB=30(3)第情况:当60110时,如图31,由(1)知,ADB=30,作AEBD,在RtADE中,ADB=30,AD=1,DE=,BCD是等边三角形,BD=BC=7,BD=BD=7
29、,BE=BDDE=7;第情况:当060时,如图4中,作ABD=ABD,BD=BD,连接CD,AD同理可得:ABC=(180)=90,ABD=DBCABC=(90),同(1)可证ABDABD,ABD=ABD=(90),BD=BD,ADB=ADB,DBC=ABCABD=90(90)=180(+),DB=DC,BDC=60同(1)可证ADBADC,ADB=ADC,ADB+ADC+BDC=360,ADB=ADB=150,在RtADE中,ADE=30,AD=1,DE=,BE=BD+DE=7+,故答案为:7+或7【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质等边三角形的性质、等腰三角形的性质等
30、知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型23、(1)yx2;(2)C(2,0),AOB=6,,(3)4x0或x2.【解析】(1)先把B点坐标代入代入y,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和AOB的面积SAOC+SBOC进行计算;(3)观察函数图象得到当4x0或x2时,一次函数图象都在反比例函数图象下方【详解】解:B(2,4)在反比例函数y的图象上,m2(4)8,反比例函数解析式为:y,把A(4,n)代入y,得4n8,解得n2,则
31、A点坐标为(4,2)把A(4,2),B(2,4)分别代入ykx+b,得,解得,一次函数的解析式为yx2;(2)yx2,当x20时,x2,点C的坐标为:(2,0),AOB的面积AOC的面积+COB的面积22+246;(3)由图象可知,当4x0或x2时,一次函数的值小于反比例函数的值【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用24、【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,a=-1,将a=-1代入得,原式=【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.