《湖南省岳阳市九校2022-2023学年中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖南省岳阳市九校2022-2023学年中考冲刺卷数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,数轴A、B上两点分别对应实数a、b
2、,则下列结论正确的是( )Aab0Bab 0CD2下列运算结果是无理数的是()A3BCD3下列所给函数中,y随x的增大而减小的是()Ay=x1By=2x2(x0)CDy=x+14为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A3,2.5B1,2C3,3D2,25下列各式中计算正确的是()Ax3x3=2x6B(xy2)3=xy6C(a3)2=a5Dt10t9=t6计算|3|的结果是()A1 B5 C1 D57拒绝“餐桌浪费”,刻不容缓节约一
3、粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年“”这个数据用科学记数法表示为( )A B C D.8下列说法正确的是( )A“明天降雨的概率是60%”表示明天有60%的时间都在降雨B“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近9如图所示的图形,是下面哪个正方体的展开图()ABCD10某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有
4、11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D51二、填空题(共7小题,每小题3分,满分21分)11如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F若AD=8cm,AB=6cm,AE=4cm则EBF的周长是_cm12从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_13已知关于x的不等式组只有四个整数解,则实数a的取值范是_14如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_15如图,ABC内接于O,
5、AB为O的直径,CAB=60,弦AD平分CAB,若AD=6,则AC=_16分解因式_17的算术平方根是_.三、解答题(共7小题,满分69分)18(10分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A处时,有ABAB(1)求A到BD的距离;(2)求A到地面的距离19(5分)如图,在平面直角坐标系中,直线yx+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线yx+2上一点,直线yx+b过点C求m和b的值;直线yx+b与x轴交
6、于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动设点P的运动时间为t秒若点P在线段DA上,且ACP的面积为10,求t的值;是否存在t的值,使ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由20(8分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;(2)当35x50时,选取哪种方式能节省上网费,请说明理由21(10分)如图,菱形ABCD中,已知BAD=120,EGF=60, EGF的顶点G在
7、菱形对角线AC上运动,角的两边分别交边BC、CD于E、F(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;(2)知识探究:如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当2时,求EC的长度22(10分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F 求证:ABECAD;求BFD的度数.23(12分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一
8、批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元要求精加工数量不多于粗加工数量的三倍为获得最大利润,精加工数量应为多少吨?最大利润是多少?24(14分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖若某单位想
9、要买5个水瓶和n(n10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】本题要先观察a,b在数轴上的位置,得b-10a1,然后对四个选项逐一分析【详解】A、因为b-10a1,所以|b|a|,所以a+b0,故选项A错误;B、因为b0a,所以ab0,故选项B错误;C、因为b-10a1,所以+0,故选项C正确;D、因为b-10a1,所以-0,故选项D错误故选C【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数2、B【解析】根据二次根式的运算法则即可求出答案【详解】A选
10、项:原式326,故A不是无理数;B选项:原式,故B是无理数;C选项:原式6,故C不是无理数;D选项:原式12,故D不是无理数故选B【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型3、A【解析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项【详解】解:A此函数为一次函数,y随x的增大而减小,正确;B此函数为二次函数,当x0时,y随x的增大而减小,错误;C此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D此函数为一次函数,y随x的增大而增大,错误故选A【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌
11、握函数的增减性是解决问题的关键4、D【解析】试题解析:表中数据为从小到大排列数据1小时出现了三次最多为众数;1处在第5位为中位数所以本题这组数据的中位数是1,众数是1故选D考点:1.众数;1.中位数.5、D【解析】试题解析:A、 原式计算错误,故本选项错误;B、 原式计算错误,故本选项错误;C、 原式计算错误,故本选项错误;D、 原式计算正确,故本选项正确;故选D点睛:同底数幂相除,底数不变,指数相减.6、B【解析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值【详解】原式 故选:B【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键7、C【解析】用科学记数法表示较大的数时
12、,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】32400000=3.24107元故选C【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键8、D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖故C不符合题意;D. “抛一枚正方体骰子,朝上的
13、点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键9、D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D
14、选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.10、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.二、填空题(共7小题,每小题3分,满分21分)11、2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=ADAH=2x,在RtAEH中,EAH=90,AE=4,AH=x,EH=DH=2x,EH2=AE2+AH2,即(2x)2=42+x2,解得:x=1AH=1,EH=5.CAEH=12.B
15、FE+BEF=90,BEF+AEH=90,BFE=AEH又EAH=FBE=90,EBFHAE,CEBF=CHAE=2考点:1折叠问题;2勾股定理;1相似三角形.12、.【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.13、-3a-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法则表示出不等式组的解集,由不等式组只有四个整
16、数解,根据解集取出四个整数解,即可得出a的范围详解: 由不等式解得: 由不等式移项合并得:2x4,解得:x2,原不等式组的解集为 由不等式组只有四个整数解,即为1,0,1,2,可得出实数a的范围为 故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.14、【解析】分析题意,如图所示,连接BF,由翻折变换可知,BFAE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可
17、【详解】如图,连接BF.AEF是由ABE沿AE折叠得到的,BFAE,BE=EF.BC=6,点E为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质15、2【解析】首先连接BD,由AB是O的直径,可得C=D=90,然后由BAC=60,弦AD平分BAC,求得BAD的度数,又由AD=6,求得AB的长,继而求得答案【详解】解:连接BD,AB是O的直径,C=D=90,BAC
18、=60,弦AD平分BAC,BAD=BAC=30,在RtABD中,AB=4,在RtABC中,AC=ABcos60=4=2故答案为216、(x+y+z)(xyz)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解本题后三项可以为一组组成完全平方式,再用平方差公式即可【详解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z)故答案为(x+y+z)(x-y-z)【点睛】本题考查了用分组分解法进行因式分解难点是采用两两分组还是三一分组本题后三项可组成完全平方公式,可把后三项分为一组17、3【解析】根据算术平方根定义,先化简,再求的算术
19、平方根.【详解】因为=9所以的算术平方根是3故答案为3【点睛】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错要熟悉特殊数字0,1,-1的特殊性质三、解答题(共7小题,满分69分)18、(1)A到BD的距离是1.2m;(2)A到地面的距离是1m【解析】(1)如图2,作AFBD,垂足为F根据同角的余角相等证得2=3;再利用AAS证明ACBBFA,根据全等三角形的性质即可得AF=BC,根据BC=BDCD求得BC的长,即可得AF的长,从而求得A到BD的距离;(2)作AHDE,垂足为H,可证得AH=FD,根据AH=BDBF求得AH的长,从而求得A到地面的距
20、离.【详解】(1)如图2,作AFBD,垂足为FACBD,ACB=AFB=90;在RtAFB中,1+3=90; 又ABAB,1+2=90,2=3;在ACB和BFA中,ACBBFA(AAS);AF=BC,ACDE且CDAC,AEDE,CD=AE=1.8;BC=BDCD=31.8=1.2,AF=1.2,即A到BD的距离是1.2m (2)由(1)知:ACBBFA,BF=AC=2m,作AHDE,垂足为HAFDE,AH=FD,AH=BDBF=32=1,即A到地面的距离是1m【点睛】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明ACBBFA是解决问题的关键.19、(1)4,5;(2)7;4或 或或
21、8.【解析】分别令可得b和m的值;根据的面积公式列等式可得t的值;存在,分三种情况:当时,如图1,当时,如图2,当时,如图3,分别求t的值即可【详解】把点代入直线中得:,点,直线过点C,;由题意得:,中,当时,中,当时,的面积为10,则t的值7秒;存在,分三种情况:当时,如图1,过C作于E,即;当时,如图2,;当时,如图3,即;综上,当秒或秒或秒或8秒时,为等腰三角形【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题20、(1),;(
22、2)当35x1时,选择B方式能节省上网费,见解析.【解析】(1)根据两种方式的收费标准,进行分类讨论即可求解;(2)当35x1时,计算出y1-y2的值,即可得出答案【详解】解:(1)由题意得:;即;即;(2)选择B方式能节省上网费当35x1时,有y13x45,y21:y1-y2=3x4513x2记y3x-2因为34,有y随x的增大而增大当x35时,y3所以当35x1时,有y3,即y4所以当35x1时,选择B方式能节省上网费【点睛】此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键21、(1)证明见解析(2)线段EC,CF与BC的数量关
23、系为:CECFBC.CECFBC(3)【解析】(1)利用包含60角的菱形,证明BAECAF,可求证;(2)由特殊到一般,证明CAECGE,从而可以得到EC、CF与BC的数量关系(3) 连接BD与AC交于点H,利用三角函数BH ,AH,CH的长度,最后求BC长度.【详解】解:(1)证明:四边形ABCD是菱形,BAD120,BAC60,BACF60,AB=BC,AB=AC,BAEEACEACCAF60,BAE=CAF,在BAE和CAF中,,BAECAF,BECF,ECCFECBEBC,即ECCFBC; (2)知识探究:线段EC,CF与BC的数量关系为:CECFBC.理由:如图乙,过点A作AEEG,
24、AFGF,分别交BC、CD于E、F类比(1)可得:EC+CF=BC,AEEG,CAECGE,同理可得:,即;CECFBC. 理由如下:过点A作AEEG,AFGF,分别交BC、CD于E、F.类比(1)可得:ECCFBC,AEEG,CAECAE,CECE,同理可得:CFCF,CECFCECF(CECF)BC,即CECFBC; (3)连接BD与AC交于点H,如图所示:在RtABH中,AB8,BAC60,BHABsin608,AHCH=ABcos6084,GH1,CG413,t(t2),由(2)得:CECFBC,CEBC CF8.【点睛】本题属于相似形综合题,主要考查了全等三角形的判定和性质、菱形的性
25、质,相似三角形的判定和性质等知识的综合运用,解题的关键是灵活运用这些知识解决问题,学会添加辅助线构造相似三角形22、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明ABECAD;(2)由三角形全等可以得出ABE=CAD,由外角与内角的关系就可以得出结论试题解析:(1)ABC为等边三角形,AB=BC=AC,ABC=ACB=BAC=60在ABE和CAD中,AB=CA, BAC=C,AE =CD, ABECAD(SAS),(2)ABECAD,ABE=CAD,BAD+CAD=60,BAD+EBA=60,BFD=ABE+BAD,BFD=6023、(1)第一次购进4
26、0吨,第二次购进160吨;(2)为获得最大利润,精加工数量应为150吨,最大利润是1【解析】(1)设第一批购进蒜薹a吨,第二批购进蒜薹b吨构建方程组即可解决问题(2)设精加工x吨,利润为w元,则粗加工(100-x)吨利润w=800x+400(200x)=400x+80000,再由x3(100-x),解得x150,即可解决问题【详解】(1)设第一次购进a吨,第二次购进b吨,解得 ,答:第一次购进40吨,第二次购进160吨;(2)设精加工x吨,利润为w元,w=800x+400(200x)=400x+80000,x3(200x),解得,x150,当x=150时,w取得最大值,此时w=1,答:为获得最
27、大利润,精加工数量应为150吨,最大利润是1【点睛】本题考查了二元一次方程组的应用与一次函数的应用,解题的关键是熟练的掌握二元一次方程组的应用与一次函数的应用.24、(1)一个水瓶40元,一个水杯是8元;(2)当10n25时,选择乙商场购买更合算当n25时,选择甲商场购买更合算【解析】(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48x)元,根据题意得:3x+4(48x)152,解得:x40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(405+8n)80%160+6.4n乙商场所需费用为540+(n52)8120+8n则n10,且n为整数,160+6.4n(120+8n)401.6n讨论:当10n25时,401.6n0,160+0.64n120+8n,选择乙商场购买更合算当n25时,401.6n0,即 160+0.64n120+8n,选择甲商场购买更合算【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.