2022-2023学年广东省高州市九校联考中考冲刺卷数学试题含解析.doc

上传人:茅**** 文档编号:87798518 上传时间:2023-04-17 格式:DOC 页数:23 大小:1.23MB
返回 下载 相关 举报
2022-2023学年广东省高州市九校联考中考冲刺卷数学试题含解析.doc_第1页
第1页 / 共23页
2022-2023学年广东省高州市九校联考中考冲刺卷数学试题含解析.doc_第2页
第2页 / 共23页
点击查看更多>>
资源描述

《2022-2023学年广东省高州市九校联考中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省高州市九校联考中考冲刺卷数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D62长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为(

2、)A6.7106 B6.7106 C6.7105 D0.671073某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平均数D方差4如图,ABCD,FEDB,垂足为E,1=60,则2的度数是()A60B50C40D305已知3x+y6,则xy的最大值为()A2B3C4D66如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A30,28 B26,26 C31,30 D26,227(2011贵州安顺,4,3分

3、)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数与众数分别是( )A27,28B27.5,28C28,27D26.5,278下列事件中,属于不确定事件的是( )A科学实验,前100次实验都失败了,第101次实验会成功B投掷一枚骰子,朝上面出现的点数是7点C太阳从西边升起来了D用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形9关于x的不等式组的所有整数解是()A0,1B1,0,1C0,1,2D2,0,1,210将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均

4、匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )ABCD11下列调查中,最适合采用普查方式的是()A对太原市民知晓“中国梦”内涵情况的调查B对全班同学1分钟仰卧起坐成绩的调查C对2018年央视春节联欢晚会收视率的调查D对2017年全国快递包裹产生的包装垃圾数量的调查12下列运算正确的是()A2aa=1 B2a+b=2ab C(a4)3=a7 D(a)2(a)3=a5二、填空题:(本大题共6个小题,每小题4分,共24分)13点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_14在一个不透明的袋子里装有除颜色外其它均

5、相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_15已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _16在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_17如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2)点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成

6、2:1两部分,则x的值为_18若二次函数yx24xk的最大值是9,则k_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,在ABC中,AB=BC,ABC=90,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC(1)求证:四边形FBGH是菱形;(2)求证:四边形ABCH是正方形20(6分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m1,连接CA,若

7、ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由21(6分)已知抛物线y=a(x+3)(x1)(a0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=x+b与抛物线的另一个交点为D(1)若点D的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与ABC相似,求点P的坐标;(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒

8、个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?22(8分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45,OC=2,求弦CD的长23(8分)ABC在平面直角坐标系中的位置如图所示画出ABC关于y轴对称的A1B1C1;将ABC向右平移6个单位,作出平移后的A2B2C2,并写出A2B2C2各顶点的坐标;观察A1B1C1和A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴24(10分)计算:16+()2|2|+2tan6025(10分)如图,O直径AB和弦CD相交于

9、点E,AE2,EB6,DEB30,求弦CD长26(12分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)27(12分)如图1,在ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足ACPMBA,则称点P为A

10、BC的“好点”(1)如图2,当ABC90时,命题“线段AB上不存在“好点”为 (填“真”或“假”)命题,并说明理由;(2)如图3,P是ABC的BA延长线的一个“好点”,若PC4,PB5,求AP的值;(3)如图4,在RtABC中,CAB90,点P是ABC的“好点”,若AC4,AB5,求AP的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别

11、经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-11=2故选D2、A【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:6 700 000=6.7106,故选:A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、B【解析】分析:由于比赛取前18名参加决赛,共有35

12、名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数4、D【解析】由EFBD,1=60,结合三角形内角和为180即可求出D的度数,再由“两直线平行,同位角相等”即可得出结论【详解】解:在DEF中,1=60,DEF=90,D=180-DEF-1=30ABCD,2=D=30故选D【点睛】本题考查平行线的性质以及三角形内角和为180,解题关键是根据平行线的性质,找出相等、互余或互补的角5、B【解析】根据

13、已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值【详解】解:1x+y=6,y=-1x+6,xy=-1x2+6x=-1(x-1)2+1(x-1)20,-1(x-1)2+11,即xy的最大值为1故选B【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值6、B【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1平均数是(222+23+1+28+30+31)7=1,所以平均数是1故选B考点:中位数;加权平均数7、A【解析】根据表格可知:数据2

14、5出现1次,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.8、A【解析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、是随机事件,故A符合题意;B、是不可能事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是必然事件,故D不符合题意;故选A【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条

15、件下,可能发生也可能不发生的事件9、B【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案【详解】解不等式2x4,得:x2,解不等式3x51,得:x2,则不等式组的解集为2x2,所以不等式组的整数解为1、0、1,故选:B【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键10、B【解析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以

16、两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.11、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查12、D【

17、解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答【详解】A、2aa=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(a)2(a)3=a5,故本选项正确,故选D【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1a1【解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无解;当点(a-1,y1)、(a+1,y2)在图象的两支上

18、,y1y2,a-10,a+10,解得:-1a1故答案为:-1a1【点睛】本题考查反比例函数的性质14、【解析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.故答案是:.15、或x=-1【解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x=2或x=-1故答案为x=2

19、或x=-1【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键16、 【解析】先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解【详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为,故答案为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率17、或【解析】试题分析:当点F在OB上时,设EF

20、交CD于点P,可求点P的坐标为(,1)则AF+AD+DP=3+x, CP+BC+BF=3x,由题意可得:3+x=2(3x),解得:x=由对称性可求当点F在OA上时,x=,故满足题意的x的值为或故答案是或【点睛】考点:动点问题18、5【解析】y=(x2)2+4+k,二次函数y=x24x+k的最大值是9,4+k=9,解得:k=5,故答案为:5.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析 (2)见解析【解析】(1)由三角形中位线知识可得DFBG,GHBF,根据菱形的判定的判定可得四边形FBGH是菱形;(2)连结BH,交AC于点O,利用平行四边形

21、的对角线互相平分可得OB=OH,OF=OG,又AF=CG,所以OA=OC再根据对角线互相垂直平分的平行四边形得证四边形ABCH是菱形,再根据一组邻边相等的菱形即可求解【详解】(1)点F、G是边AC的三等分点,AF=FG=GC又点D是边AB的中点,DHBG同理:EHBF四边形FBGH是平行四边形,连结BH,交AC于点O,OF=OG,AO=CO,AB=BC,BHFG,四边形FBGH是菱形;(2)四边形FBGH是平行四边形,BO=HO,FO=GO又AF=FG=GC,AF+FO=GC+GO,即:AO=CO四边形ABCH是平行四边形ACBH,AB=BC,四边形ABCH是正方形【点睛】本题考查正方形的判定

22、,菱形的判定和性质,三角形的中位线,熟练掌握正方形的判定和性质是解题的关键20、(1)A(4,0),C(3,3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,4);【解析】方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论APC=,ACP=,PAC=三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,可得RtFNPRtPBC,NP:NF=BC:BP求得直线PE的解析式,后利用PEC是以P为直角顶点的等腰直角

23、三角形求得E点坐标.方法二:(1)同方法一.(2) 由ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标【详解】方法一:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m1),A(2m,0)对称轴x=m,P(1,m)把x=1代入抛物线y=x22mx,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2

24、+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5,AC2=1+(12m)2=24m+4m2,ACP为直角三角形,当ACP=90时,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:4m210m+6=0,解得:m=,m=1(舍去),当APC=90时,PA2+PC2=AC2,即5m24m+1+5m210m+5=24m+4m2,整理得:6m210m+4=0,解得:m=,m=1,和1都不符合m1,故m=(3)设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,FPN=PCB,PNF=CBP=90,RtFNPRtPBC,NP:N

25、F=BC:BP,即=,y=2x2m,直线PE的解析式为y=2x2m令y=0,则x=1+,E(1+m,0),PE2=(m)2+(m)2=,=5m210m+5,解得:m=2,m=,E(2,0)或E(,0),在x轴上存在E点,使得PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=2m,E(0,2m)PE2=(2)2+12=55m210m+5=5,解得m=2,m=0(舍去),E(0,4)y轴上存在点E,使得PEC是以P为直角顶点的等腰直角三角形,此时E(0,4),在坐标轴上是存在点E,使得PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0

26、,4);方法二:(1)略(2)P(1,m),B(1,12m),对称轴x=m,C(2m1,12m),A(2m,0),ACP为直角三角形,ACAP,ACCP,APCP,ACAP,KACKAP=1,且m1,m=1(舍)ACCP,KACKCP=1,且m1,=1,m=,APCP,KAPKCP=1,且m1,=1,m=(舍)(3)P(1,m),C(2m1,12m),KCP=,PEC是以P为直角顶点的等腰直角三角形,PEPC,KPEKCP=1,KPE=2,P(1,m),lPE:y=2x2m,点E在坐标轴上,当点E在x轴上时,E(,0)且PE=PC,(1)2+(m)2=(2m11)2+(12m+m)2,m2=5

27、(m1)2,m1=2,m2=,E1(2,0),E2(,0),当点E在y轴上时,E(0,2m)且PE=PC,(10)2+(m+2+m)2=(2m11)2+(12m+m)2,1=(m1)2,m1=2,m2=0(舍),E(0,4),综上所述,(2,0)或(,0)或(0,4)【点睛】本题主要考查二次函数的图象与性质. 扩展:设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:AB=.设平面内直线AB的解析式为:,直线CD的解析式为:(1)若AB/CD,则有:;(2)若ABCD,则有:.21、(1)y=(x+3)(x1)=x22x+3;(2)(4,)和(6,3)(3)(1,4)【解析】试

28、题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PHx轴于H,设点P的坐标为(m,n),分BPAABC和PBAABC,根据相似三角形的性质计算即可;(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可试题解析:(1)y=a(x+3)(x1),点A的坐标为(3,0)、点B两的坐标为(1,0),直线y=x+b经过点A,b=3,y=x3,当x=2时,y=5,则点D的坐标为(2,5),点D在抛物线上,a(2+3)(21)=5,解得,a=,则抛物线的解析式为y=(x+3

29、)(x1)=x22x+3;(2)作PHx轴于H,设点P的坐标为(m,n),当BPAABC时,BAC=PBA,tanBAC=tanPBA,即=,=,即n=a(m1),解得,m1=4,m2=1(不合题意,舍去),当m=4时,n=5a,BPAABC,=,即AB2=ACPB,42=,解得,a1=(不合题意,舍去),a2=,则n=5a=,点P的坐标为(4,);当PBAABC时,CBA=PBA,tanCBA=tanPBA,即=,=,即n=3a(m1),解得,m1=6,m2=1(不合题意,舍去),当m=6时,n=21a,PBAABC,=,即AB2=BCPB,42=,解得,a1=(不合题意,舍去),a2=,则

30、点P的坐标为(6,),综上所述,符合条件的点P的坐标为(4,)和(6,);(3)作DMx轴交抛物线于M,作DNx轴于N,作EFDM于F,则tanDAN=,DAN=60,EDF=60,DE=EF,Q的运动时间t=+=BE+EF,当BE和EF共线时,t最小,则BEDM,E(1,4)考点:二次函数综合题.22、(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30,从而求出OAB=90,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的

31、切线,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60,又B=CAB,B=30,OAB=90AB是O的切线(2)作AECD于点EO=60,D=30ACD=45,AC=OC=2,在RtACE中,CE=AE=;D=30,AD=2【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型23、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)A1B1C1和A2B2C2是轴对称图形,对称轴为图中直线l:x1,见解

32、析.【解析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1【详解】(1)由图知,A(0,4),B(2,2),C(1,1),点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得A1B1C1;(2)ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变,作出A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)A1B1C1和A2B

33、2C2是轴对称图形,对称轴为图中直线l:x=1【点睛】本题考查了轴对称图形的性质和作图平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形24、1+3【解析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果【详解】16+()2|2|+2tan60=1+4(2)+2,=1+42+2,=1+3【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则25、【解析】试题分析:过O作OF垂直于CD,连

34、接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OAAE求出OE的长,在直角三角形OEF中,利用30所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长试题解析:过O作OFCD,交CD于点F,连接OD,F为CD的中点,即CF=DF,AE=2,EB=6,AB=AE+EB=2+6=8,OA=4,OE=OAAE=42=2,在RtOEF中,DEB=30,OF=OE=1,在RtODF中,OF=1,OD=4,根据勾股定理得:DF=,则CD=2DF=2考点:垂径定理;勾股定理26、()点P

35、的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP

36、2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,A

37、Q=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)27、(1)真;(2);(3)或或.【解析】(1)先根据直角三角形斜边的中线等于斜边的一半可知MP=MB,从而MPB=MBP,然后根据三角形外角的性质说明即可;(2)先证明PACPMB,然后根据相似三角形的性质求解即可;(3)分三种情况求解:P为线段AB上的“好点”, P为线段AB延长线上的“好点”, P为线段BA延长线上的“好点”.【详解】(1)真 .理由如下:如图,当ABC=90时,M为PC中点,BM=PM,则MPB=MBPACP,所以在线段AB上不存在“好点”; (2)P为BA延长线上一个“好点”;AC

38、P=MBP;PACPMB;即;M为PC中点,MP=2;. (3)第一种情况,P为线段AB上的“好点”,则ACP=MBA,找AP中点D,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPDBM;DM2=DPDB即4= DP(5DP);解得DP=1,DP=4(不在AB边上,舍去;)AP=2 第二种情况(1),P为线段AB延长线上的“好点”,则ACP=MBA,找AP中点D,此时,D在线段AB上,如图,连结MD;M为CP中点;MD为CPA中位线;MD=2,MD/CA;DMP=ACP=MBA;DMPDBMDM2=DPDB即4= DP(5DA)= DP(5DP);解得DP=1(不在AB延长线上,舍去),DP=4AP=8;第二种情况(2),P为线段AB延长线上的“好点”,找AP中点D,此时,D在AB延长线上,如图,连结MD; 此时,MBAMDBDMP=ACP,则这种情况不存在,舍去; 第三种情况,P为线段BA延长线上的“好点”,则ACP=MBA, PACPMB; BM垂直平分PC则BC=BP= ;综上所述,或或;【点睛】本题考查了信息迁移,三角形外角的性质,直角三角形斜边的中线等于斜边的一半,相似三角形的判定与性质及分类讨论的数学思想,理解“好点”的定义并能进行分类讨论是解答本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁