《湖北省鄂州市鄂城区重点名校2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《湖北省鄂州市鄂城区重点名校2022-2023学年中考适应性考试数学试题含解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1若分式的值为0,则x的值为()A-2B0C2D22下列各类数中,与数轴上的点存在一一对应关系的是()A有理数 B实数 C分数 D整数3安徽省2010年末森林面积为3804.2千公
2、顷,用科学记数法表示3804.2千正确的是()A3804.2103B380.42104C3.8042106D3.80421054如图,在等腰直角三角形ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点D重合,EF为折痕,则sinBED的值是( )ABCD5一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是A平均数B中位数C众数D方差6如图,OP平分AOB,PCOA于C,点D是OB上的动点,若PC6cm,则PD的长可以是()A7cmB4cmC5cmD3cm7已知x=2,则代数式(7+4)x2+(2+)x+ 的值是()A0BC2+D28正比例函数y=(k+1)x,若y随x增
3、大而减小,则k的取值范围是()Ak1Bk1Ck1Dk19某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是()A B C D10如图,将一块三角板的直角顶点放在直尺的一边上,当2=38时,1=( )A52B38C42D60二、填空题(本大题共6个小题,每小题3分,共18分)11点 C 在射线 AB上,若 AB=3,BC=2,则AC为_12若一个正n边形的每个内角为144,则这个正n边形的所有对角线的条数是_.13点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_14若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_15
4、比较大小:_(填“,“=“,“)16一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_.三、解答题(共8题,共72分)17(8分)已知,抛物线(为常数)(1)抛物线的顶点坐标为( , )(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 18(8分)先化简,再求值:,其中19(8分)如图,B、E、C、F在同一直线上,ABDE,BECF,
5、BDEF,求证:ACDF20(8分)货车行驶25与轿车行驶35所用时间相同已知轿车每小时比货车多行驶20,求货车行驶的速度21(8分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表对雾霾了解程度的统计表 对雾霾的了解程度百分比A非常了解5%B比较了解mC基本了解45%D不了解n请结合统计图表,回答下列问题:统计表中:m ,n ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少
6、度?22(10分)如图,四边形ABCD中,AC平分DAB,AC2ABAD,ADC90,E为AB的中点(1)求证:ADCACB;(2)CE与AD有怎样的位置关系?试说明理由;(3)若AD4,AB6,求的值23(12分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.24化简,再求值:参考答案一、选择题(共10小题,每小题3分,共30分)1、C【
7、解析】由题意可知:,解得:x=2,故选C.2、B【解析】根据实数与数轴上的点存在一一对应关系解答【详解】实数与数轴上的点存在一一对应关系,故选:B【点睛】本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】3804.2千=3804200,3804200=3.8042106;故选:C【点睛】本题考查科学记数法的表示方法科学记数法的
8、表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、A【解析】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得x=,sinBED=sinCDF=故选:A5、D【解析】解:A原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C原来数据
9、的众数是2,添加数字2后众数仍为2,故C与要求不符;D原来数据的方差=,添加数字2后的方差=,故方差发生了变化故选D6、A【解析】过点P作PDOB于D,根据角平分线上的点到角的两边距离相等可得PCPD,再根据垂线段最短解答即可【详解】解:作PDOB于D,OP平分AOB,PCOA,PDOA,PDPC6cm,则PD的最小值是6cm,故选A【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键7、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2时,(7+4)x2+(2+)x+ (7+4)(2)2+(2+)(2)+ (7+4)
10、(7-4)+1+ 49-48+1+2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算8、D【解析】根据正比例函数图象与系数的关系列出关于k的不等式k+10,然后解不等式即可【详解】解:正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,k+10,解得,k-1;故选D【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系k0时,直线必经过一、三象限,y随x的增大而增大;k0时,直线必经过二、四象限,y随x的增大而减小9、B【解析】从几何体的正面看可得下图,故选B10、
11、A【解析】试题分析:如图:3=2=38(两直线平行同位角相等),1=903=52,故选A考点:平行线的性质二、填空题(本大题共6个小题,每小题3分,共18分)11、2或2【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,AB=3,BC=2,AC=ABBC=3-2=2;(2)当点C在线段AB的延长线上时,如图,AB=3,BC=2,AC=AB+BC=3+2=2 故答案为2或2点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解12、2【解析】由正n边形的每个内角为144结合多边形内角和公式,即可得出关于n的一元一次方程
12、,解方程即可求出n的值,将其代入中即可得出结论【详解】一个正n边形的每个内角为144,144n=180(n-2),解得:n=1这个正n边形的所有对角线的条数是:= =2故答案为2【点睛】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键13、1a1【解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无解;当点(a-1,y1)、(a+1,y2)在图象的两支上,y1y2,a-10,a+10,解得:-
13、1a1故答案为:-1a1【点睛】本题考查反比例函数的性质14、1【解析】根据一元二次方程的解的定义把x1代入x1mx1n0得到41m1n0得nm1,然后利用整体代入的方法进行计算【详解】1(n0)是关于x的一元二次方程x1mx1n0的一个根,41m1n0,nm1,故答案为1【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根15、【解析】先比较它们的平方,进而可比较与的大小.【详解】()2=80,()2=100,80100,故答案为:.【点睛】本题考查
14、了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.16、 【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,故答案为三、解答题(共8题,共72分)17、(1);(2)图象见解析,或;(3)【解析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意
15、找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求【详解】解:(1),抛物线的顶点的坐标为故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或将代入得:,将代入得:,综上所述,反比例函数的表达式为或(3)设点的坐标为,则点的坐标为,的坐标为的长随的增大而减小矩形在其对称轴的左侧,抛物线的对称轴为, 当时,的长有最小值,的最小值的长度不变,当最小时,有最小值的最小值故答案为:【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关
16、键18、,【解析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】原式,将a1代入得,原式,故答案为.【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.19、见解析【解析】由BECF可得BCEF,即可判定,再利用全等三角形的性质证明即可【详解】BECF,即BCEF,又ABDE,BDEF,在与中,ACDF【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.20、50千米/小时.【解析】根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可【详解】解:设货车的速度为x千米/小时,依题意得:解
17、:根据题意,得 解得:x=50经检验x=50是原方程的解.答:货车的速度为50千米/小时.【点睛】本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.21、(1)20;15%;35%;(2)见解析;(3)126【解析】(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;(2)求出D的学生人数,然后补全统计图即可;(3)用D的百分比乘360计算即可得解【详解】解:(1)非常了解的人数为20,60400100%=15%,15%15%45%=35%,故答案为20;15%;35%;(2)D等级的人数为:40035%
18、=140,补全条形统计图如图所示:(3)D部分扇形所对应的圆心角:36035%=126【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)证明见解析;(2)CEAD,理由见解析;(3)【解析】(1)根据角平分线的定义得到DAC=CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到ACB=ADC=90,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;(3)根据相似三角形的性质列出比例式,计算即可【详
19、解】解:(1)AC平分DAB,DAC=CAB,又AC2=ABAD,AD:AC=AC:AB,ADCACB;(2)CEAD,理由:ADCACB,ACB=ADC=90,又E为AB的中点,EAC=ECA,DAC=CAE,DAC=ECA,CEAD;(3)AD=4,AB=6,CE=AB=AE=3,CEAD,FCE=DAC,CEF=ADF,CEFADF,=,=23、112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=302x与自变量x的取值范围为6x11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值试题解析:解:(1)y=302x(6x11)(2)设矩形苗圃园的面积为S,则S=xy=x(302x)=2x2+30x,S=2(x7.1)2+112.1,由(1)知,6x11,当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1点睛:此题考查了二次函数的实际应用问题解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可24、【解析】试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了试题解析:原式=当时,原式=.考点:1.二次根式的化简求值;2.分式的化简求值