《辽宁省抚顺市新宾满族自治县重点名校2022-2023学年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省抚顺市新宾满族自治县重点名校2022-2023学年中考适应性考试数学试题含解析.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各数中,为无理数的是()ABCD2用加减法解方程组时,若要求消去,则应( )ABCD3如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树
2、高为( )米ABC+1D34下列运算正确的是()A B =3 Caa2=a2 D(2a3)2=4a65如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cmB cmC2.5cmD cm6一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D27如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD8将一把直尺和一块含30和60角的三角板ABC按如图所示的位置放置,如果CDE=40,那么BAF的
3、大小为()A10B15C20D259的相反数是()A2B2C4D10如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则SDEF:SABF=( )A2:3B4:9C2:5D4:2511一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限12下列计算正确的是( )Ax2+x2=x4 Bx8x2=x4 Cx2x3=x6 D(-x)2-x2=0二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在RtABC中,ACB90,AB5,AC3,点D是BC上一动点,连接AD,将ACD沿AD折叠,点C落在点E
4、处,连接DE交AB于点F,当DEB是直角三角形时,DF的长为_14如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_15如图,在四边形ABCD中,BD90,AB3, BC2,tanA,则CD_16方程的两个根为、,则的值等于_17如图,反比例函数(x0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则OEF的面积的值为 18如图放置的正方形,正方形,正方形,都是边长为的正方形,点在轴上,点,都在直线上,则的坐标是_,的坐标是_.三、解答题:(本大题共9个小题,共78分,解
5、答应写出文字说明、证明过程或演算步骤19(6分)如图所示,抛物线yx2+bx+c经过A、B两点,A、B两点的坐标分别为(1,0)、(0,3)求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DCDE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,请你直接写出所有满足条件的点P的坐标20(6分)如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AEDF,求
6、此二次函数解析式;(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值21(6分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值22(8分)某市旅游部门统计了今年“五一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测
7、,明年“五一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?23(8分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,(1)求抛物线的解析式;(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。24(10分)自学下面材料后,解答问题。分母中含有未知数的不等式叫分式不等式。如: 0,b0,则0;若a0,b0;若a0,b0,则0;若a0,则0,则 或 ,(1)若0的解集.25(10分)如图,O为直线AB上一点,AOC=50,OD平分AOC,DOE=90写出图中小于平角的角求出BOD的度数小明
8、发现OE平分BOC,请你通过计算说明道理26(12分)某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元 若该公司当月卖出3部汽车,则每部汽车的进价为 万元; 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)27(12分)ABC在平面直角坐标系中的位置如图所示画出ABC关于y轴对称
9、的A1B1C1;将ABC向右平移6个单位,作出平移后的A2B2C2,并写出A2B2C2各顶点的坐标;观察A1B1C1和A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】A=2,是有理数;B=2,是有理数;C,是有理数;D,是无理数,故选D.2、C【解析】利用加减消元法消去y即可【详解】用加减法解方程组时,若要求消去y,则应5+3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法3、C【解析】由题意可知,A
10、C=1,AB=2,CAB=90据勾股定理则BC=m;AC+BC=(1+)m. 答:树高为(1+)米故选C.4、D【解析】试题解析:A. 与不是同类二次根式,不能合并,故该选项错误; B.,故原选项错误;C. ,故原选项错误;D. ,故该选项正确.故选D.5、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可详解:连接OB,AC是O的直径,弦BDAO于E,BD=1cm,AE=2cm在RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=1在RtEBC中,BC=OFBC,OFC=
11、CEB=90C=C,OFCBEC,即,解得:OF= 故选D点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长6、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m()m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根7、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE
12、=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BE
13、C=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键8、A【解析】先根据CDE=40,得出CED=50,再根据DEAF,即可得到CAF=50,最后根据BAC=60,即可得出BAF的大小【详解】由图可得,CDE=40 ,C=90,CED=50,又DEAF,CAF=50,BAC=60,BAF=6050=10,故选A.【点睛】本题考查了平行线的性质,熟练掌握这一点是解题的关键.9、A【解析
14、】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:的相反数是,即2.故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.10、D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出DEFBAF,从而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25试题解析:四边形ABCD是平行四边形,ABCD,BA=DCEAB=DEF,AFB=DFE,DEFBAF,DE:AB=DE:DC=2:5,SDEF:SABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的
15、性质11、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、四象限,即不经过第一象限故选A考点:一次函数图象与系数的关系12、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方二、填空题:(本大题共6个小题,每小题4分,共24分)13、或【解析】试题分析:如图4所示;点E与点C重合时在RtABC中,BC=4由翻折的性质可知;AE=AC=3、DC=DE则EB=2设DC=ED=x
16、,则BD=4x在RtDBE中,DE2+BE2=DB2,即x2+22=(4x)2解得:x=DE=如图2所示:EDB=90时由翻折的性质可知:AC=AC,C=C=90C=C=CDC=90,四边形ACDC为矩形又AC=AC,四边形ACDC为正方形CD=AC=3DB=BCDC=43=4DEAC,BDEBCA,即解得:DE=点D在CB上运动,DBC90,故DBC不可能为直角考点:翻折变换(折叠问题)14、1【解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设A
17、Px,则PD1x,PQxPDQ45,PDPQ,即1x,x1,AP1,tanABP1,故答案为:1【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键15、【解析】延长AD和BC交于点E,在直角ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角CDE中利用三角函数的定义求解【详解】如图,延长AD、BC相交于点E,B=90,BE=,CE=BE-BC=2,AE=,又CDE=CDA=90,在RtCDE中,CD=.16、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系
18、:若、是一元二次方程(a0)的两根时,17、【解析】试题分析:如图,连接OBE、F是反比例函数(x0)的图象上的点,EAx轴于A,FCy轴于C,SAOE=SCOF=1=AE=BE,SBOE=SAOE=,SBOC=SAOB=1SBOF=SBOCSCOF=1=F是BC的中点SOEF=S矩形AOCBSAOESCOFSBEF=6=18、 【解析】先求出OA的长度,然后利用含30的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可【详解】分别过点 作y轴的垂线交y轴于点,点B在上设 同理, 都是含30的直角三角形, 同理,点 的横坐标为 纵坐标为 故点的坐标为故答案为:;【点睛】本题主要考查含
19、30的直角三角形的性质,找到点的坐标规律是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)y=x22x3;(2)D(0,1);(3)P点坐标(,0)、(,2)、(3,8)、(3,10)【解析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EFy轴于点F,利用勾股定理表示出DC,DE的长再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明CODDFE,得出CDE=90,即CDDE,然后当以C、D、P为顶点的三角形与DOC相似时,根
20、据对应边不同进行分类讨论:当OC与CD是对应边时,有比例式,能求出DP的值,又因为DE=DC,所以过点P作PGy轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;当OC与DP是对应边时,有比例式,易求出DP,仍过点P作PGy轴于点G,利用比例式求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标.【详解】解:(1)抛物线y=x2+bx+c经过A(1,0)、B(0,3),解得,故抛物线的函数解析式为y=x22x3;(2)
21、令x22x3=0,解得x1=1,x2=3,则点C的坐标为(3,0),y=x22x3=(x1)24,点E坐标为(1,4),设点D的坐标为(0,m),作EFy轴于点F(如下图),DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,DC=DE,m2+9=m2+8m+16+1,解得m=1,点D的坐标为(0,1);(3)点C(3,0),D(0,1),E(1,4),CO=DF=3,DO=EF=1,根据勾股定理,CD=,在COD和DFE中,CODDFE(SAS),EDF=DCO,又DCO+CDO=90,EDF+CDO=90,CDE=18090=90,CDDE,当OC与CD是对应边
22、时,DOCPDC,即=,解得DP=,过点P作PGy轴于点G,则,即,解得DG=1,PG=,当点P在点D的左边时,OG=DGDO=11=0,所以点P(,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(,2);当OC与DP是对应边时,DOCCDP,即=,解得DP=3,过点P作PGy轴于点G,则,即,解得DG=9,PG=3,当点P在点D的左边时,OG=DGOD=91=8,所以,点P的坐标是(3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与DOC相似,满足条件的点P共有
23、4个,其坐标分别为(,0)、(,2)、(3,8)、(3,10)考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题.20、(1);(2);(3)【解析】(1)把A(-1,0)代入y=x2-bx+c,即可得到结论;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=+1=b+1,当x=0时,得到y=-b-1,根据等腰直角三角形的性质得到D(,-b-2),将D(,-b-2)代入y=x2-bx-1-b解方程即可得到结论;(3)连接QM,DM,根据平行线的判定得到QNMH,根据平行线的性质得到NMH=QNM,根据已知条件得到
24、QMN=MQN,设QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,设MH=s,求得NH=t2-s2,根据勾股定理得到NH=1,根据三角函数的定义得到NMH=MDH推出NMD=90;根据三角函数的定义列方程得到t1=,t2=-(舍去),求得MN=,根据三角函数的定义即可得到结论【详解】(1)把A(1,0)代入,;(2)由(1)得,点D为抛物线顶点,当时,将代入得,解得:,(舍去),二次函数解析式为:;(3)连接QM,DM,设,则,同理,设,则,在中,;,即,解得:,(舍去),当时,过P作于T,【点睛】本题考查了待定系数法求二次函数的解析式,平行线的性质,三角
25、函数的定义,勾股定理,正确的作出辅助线构造直角三角形是解题的关键21、 (1)m;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)241m21,解得:m;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2,x1x2是解答此题的关键22、(1)60人;(2)144,补
26、全图形见解析;(3)15万人.【解析】(1)用B景点人数除以其所占百分比可得;(2)用360乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五一”放假期间该市这四个景点共接待游客的总人数为1830%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360=144,C景点人数为60(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90=15(万人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计
27、图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、(1);(2) (3,-4) 或(5,4)或(-5,4)【解析】(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;(2)先画出存在的点,然后通过平移和计算确定坐标;【详解】解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)设抛物线的解析式为y=ax2+bx+c则有: 解得所以函数解析式为:(2)存在,(3,-4) 或(5,4)或(-5,4)理由如下:如图:P1相当于C点向右平移了5个单位长度,则坐标为(5,4);P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);设P3
28、坐标为(m,n)在第四象限,要使A P3BC是平行四边形,则有A P3=BC, B P3=AC 即 (舍去)P3坐标为(3,-4)【点睛】本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.24、(1) 或;(2)x2或x0,则 或 ;故答案为: 或;(2)由上述规律可知,不等式转化为或,所以,x2或x1.【点睛】此题考查一元一次不等式组的应用,解题关键在于掌握掌握运算法则.25、(1)答案见解析 (2)155 (3)答案见解析【解析】(1)根据角的定义即可解决;(2)根据BOD
29、=DOC+BOC,首先利用角平分线的定义和邻补角的定义求得DOC和BOC即可;(3)根据COE=DOEDOC和BOE=BODDOE分别求得COE与BOE的度数即可说明【详解】(1)图中小于平角的角AOD,AOC,AOE,DOC,DOE,DOB,COE,COB,EOB(2)因为AOC=50,OD平分AOC,所以DOC=25,BOC=180AOC=18050=130,所以BOD=DOC+BOC=155(3)因为DOE=90,DOC=25,所以COE=DOEDOC=9025=65又因为BOE=BODDOE=15590=65,所以COE=BOE,所以OE平分BOC【点睛】本题考查了角的度数的计算,正确
30、理解角平分线的定义,以及邻补角的定义是解题的关键26、解:(1)22.1(2)设需要售出x部汽车,由题意可知,每部汽车的销售利润为:21270.1(x1)=(0.1x0.9)(万元),当0x10,根据题意,得x(0.1x0.9)0.3x=12,整理,得x214x120=0,解这个方程,得x1=20(不合题意,舍去),x2=2当x10时,根据题意,得x(0.1x0.9)x=12,整理,得x219x120=0,解这个方程,得x1=24(不合题意,舍去),x2=3310,x2=3舍去答:要卖出2部汽车【解析】一元二次方程的应用(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,
31、所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:270.12=22.1,(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0x10,以及当x10时,分别讨论得出即可27、(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)A1B1C1和A2B2C2是轴对称图形,对称轴为图中直线l:x1,见解析.【解析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1【详解】(1)由图知,A(0,4),B(2,2),C(1,1),点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得A1B1C1;(2)ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变,作出A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)A1B1C1和A2B2C2是轴对称图形,对称轴为图中直线l:x=1【点睛】本题考查了轴对称图形的性质和作图平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形