江苏省盐城市东台市第一教研片市级名校2022-2023学年中考数学适应性模拟试题含解析.doc

上传人:茅**** 文档编号:88307897 上传时间:2023-04-25 格式:DOC 页数:19 大小:1,002KB
返回 下载 相关 举报
江苏省盐城市东台市第一教研片市级名校2022-2023学年中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共19页
江苏省盐城市东台市第一教研片市级名校2022-2023学年中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《江苏省盐城市东台市第一教研片市级名校2022-2023学年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省盐城市东台市第一教研片市级名校2022-2023学年中考数学适应性模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1点是一次函数图象上一点,若点在第一象限,则的取值范围是( )ABCD2把四张形状大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示则图中两块阴影部分周长和是( )ABC

2、D3如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm4如图,将ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若DOF142,则C的度数为()A38B39C42D485如图,ABC中,B70,则BAC30,将ABC绕点C顺时针旋转得EDC当点B的对应点D恰好落在AC上时,CAE的度数是()A30B40C50D606把直线l:y=kx+b绕着原点旋转180,再向左平移

3、1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )Ay=2x+2By=2x-2Cy=-2x+2Dy=-2x-27如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A主视图是中心对称图形B左视图是中心对称图形C主视图既是中心对称图形又是轴对称图形D俯视图既是中心对称图形又是轴对称图形8用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A cmB3cmC4cmD4cm9如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB的长为()A3B4C6D810计算x2y(2x+y)的结果为()A

4、3xyB3x3yCx3yDxy二、填空题(本大题共6个小题,每小题3分,共18分)11某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63,则筒仓CD的高约为_m(精确到0.1m,sin630.89,cos630.45,tan631.96)12不等式4x的解集为_13如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45,景点B的俯角为30,此时C到地面的距离CD为1

5、00米,则两景点A、B间的距离为_米(结果保留根号)14已知是锐角,那么cos=_15使得分式值为零的x的值是_;16如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_.三、解答题(共8题,共72分)17(8分)如图,矩形ABCD中,ABAD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:DAEECD18(8分)如图,BAO=90,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=9

6、0(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比19(8分)如图,在ABC中,ACB=90,AC=1sinA=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC(1)求证;四边形PBEC是平行四边形;(2)填空:当AP的值为 时,四边形PBEC是矩形;当AP的值为 时,四边形PBEC是菱形20(8分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB

7、围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶(1)由定义知,取AB中点N,连结MN,MN与AB的关系是_(2)抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_(3)抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由21(8分)如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作ABx轴,交y轴于点D,交该二次函数图象于点B,连结BC(1)求该二次函数的解

8、析式及点M的坐标;(2)若将该二次函数图象向下平移m(m0)个单位,使平移后得到的二次函数图象的顶点落在ABC的内部(不包括ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)22(10分)先化简,再求值:,其中x=,y=23(12分)如图所示,AC=AE,1=2,AB=AD求证:BC=DE24校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD

9、的长等于21米,在上点D的同侧取点A、B,使CAD=30,CBD=60(1)求AB的长(精确到0.1米,参考数据:);(2)已知本路段对校车限速为40千米小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:把点代入一次函数得,点在第一象限上,可得,因此,即,故选B2、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a

10、+4b-2a=4b故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键3、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=25cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-25=25(cm),即可得出QR的长RN+NQ=3+25=35(cm)故选A考点:轴对称图形的性质4、A【解析】分析:根据翻折的性质得出A=DOE,B=FOE,进而得出DOF=A+B,利用三角形内角和解答即可详解:将ABC沿DE,EF翻折,A=DOE,B=FOE,DOF=DOE+EOF=A+B=142,C=180AB=180142=38 故选A点睛:本题考查

11、了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型5、C【解析】由三角形内角和定理可得ACB=80,由旋转的性质可得AC=CE,ACE=ACB=80,由等腰的性质可得CAE=AEC=50【详解】B70,BAC30ACB80将ABC绕点C顺时针旋转得EDCACCE,ACEACB80CAEAEC50故选C【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键6、B【解析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180即可得到直线l【详

12、解】解:设直线AB的解析式为ymxnA(2,0),B(0,1), ,解得 ,直线AB的解析式为y2x1将直线AB向右平移1个单位长度后得到的解析式为y2(x1)1,即y2x2,再将y2x2绕着原点旋转180后得到的解析式为y2x2,即y2x2,所以直线l的表达式是y2x2故选:B【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键7、D【解析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;

13、D、俯视图既是中心对称图形又是轴对称图形,故D正确故选:D【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键8、C【解析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高【详解】L4(cm);圆锥的底面半径为422(cm),这个圆锥形筒的高为(cm)故选C【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形9、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角

14、形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度10、C【解析】原式去括号合并同类项即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、40.0【解析】首先过点A作AEB

15、D,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后RtACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AEBD,交CD于点E,ABBD,CDBD,BAEABDBDE90,四边形ABDE是矩形,AEBD20m,DEAB0.8m,在RtACE中,CAE63,CEAEtan63201.9639.2(m),CDCEDE39.20.840.0(m)答:筒仓CD的高约40.0m,故答案为:40.0【点睛】此题考查解直角三角形的应用仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用12

16、、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.13、100+100【解析】【分析】由已知可得ACD=MCA=45,B=NCB=30,继而可得DCB=60,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45,NCB=30,ACD=MCA=45,B=NCB=30,CDAB,CDA=CDB=90,DCB=60,CD=100米,AD=CD=

17、100米,DB=CDtan60=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 14、【解析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可【详解】由sin=知,如果设a=x,则c=2x,结合a2+b2=c2得b=x.cos=.故答案为.【点睛】本题考查的知识点是同角三角函数的关系,解题的关键是熟练的掌握同角三角函数的关系.15、2【解析】根据分式的性质,要使分式有意义

18、,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则 ,即 要使分式为零,则 ,即 综上可得 故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.16、【解析】试题解析:两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,P(飞镖落在白色区域)=.三、解答题(共8题,共72分)17、见解析,【解析】要证DAE=ECD需先证ADFCEF,由折叠得BC=EC,B=AEC,由矩形得BC=AD,B=ADC=90,再根据等量代换和对顶角相等可以证出,得出结论【详解】证明:由折叠得:BC=EC,B=AE

19、C,矩形ABCD,BC=AD,B=ADC=90,EC=DA,AEC=ADC=90,又AFD=CFE,ADFCEF (AAS)DAE=ECD【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法18、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知

20、,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点19、证明见解析;(2)9;12

21、.5.【解析】(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)若四边形PBEC是矩形,则APC=90,求得AP即可;若四边形PBEC是菱形,则CP=PB,求得AP即可【详解】点D是BC的中点,BD=CDDE=PD,四边形PBEC是平行四边形;(2)当APC=90时,四边形PBEC是矩形AC=1sinA=,PC=12,由勾股定理得:AP=9,当AP的值为9时,四边形PBEC是矩形;在ABC中,ACB=90,AC=1sinA=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,AB=5x=2当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=

22、12.5,当AP的值为12.5时,四边形PBEC是菱形【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质20、(1)MN与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得

23、出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上

24、有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键21、(1)y=x2+2x+4;M(1,5);(2)2m4;(3)P1(),P2(),P3(3,1),P4(3,7)【解析】试题分析:(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得MCP=90,则若PCM与BCD相似,则要进行分

25、类讨论,分成PCMBDC或PCMCDB两种,然后利用边的对应比值求出点坐标试题解析:(1)把点A(3,1),点C(0,4)代入二次函数y=x2+bx+c得,解得 二次函数解析式为y=x2+2x+4, 配方得y=(x1)2+5,点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得:直线AC的解析式为y=x+4,如图所示,对称轴直线x=1与ABC两边分别交于点E、点F把x=1代入直线AC解析式y=x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)15m3,解得2m4;(3)连接MC,作MGy轴并延长交AC于点N,则点G坐标为(0,5

26、) MG=1,GC=54=1MC=, 把y=5代入y=x+4解得x=1,则点N坐标为(1,5),NG=GC,GM=GC, NCG=GCM=45, NCM=90,由此可知,若点P在AC上,则MCP=90,则点D与点C必为相似三角形对应点若有PCMBDC,则有BD=1,CD=3, CP=, CD=DA=3, DCA=45,若点P在y轴右侧,作PHy轴, PCH=45,CP= PH=把x=代入y=x+4,解得y=, P1();同理可得,若点P在y轴左侧,则把x=代入y=x+4,解得y= P2();若有PCMCDB,则有 CP=3 PH=3=3,若点P在y轴右侧,把x=3代入y=x+4,解得y=1;若

27、点P在y轴左侧,把x=3代入y=x+4,解得y=7P3(3,1);P4(3,7)所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(3,7)考点:二次函数综合题22、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=23、证明见解析. 【解析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定24、(1)24.2米(2) 超速,理由见解析【解析】(1)分别在RtADC与RtBDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速【详解】解:(1)由題意得,在RtADC中,在RtBDC中,AB=ADBD=(米)(2)汽车从A到B用时2秒,速度为24.22=12.1(米/秒),12.1米/秒=43.56千米/小时,该车速度为43.56千米/小时43.56千米/小时大于40千米/小时,此校车在AB路段超速

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁