浙江省桐庐分水高级中学2022-2023学年高三下第一次测试数学试题含解析.doc

上传人:lil****205 文档编号:88307826 上传时间:2023-04-25 格式:DOC 页数:22 大小:1.96MB
返回 下载 相关 举报
浙江省桐庐分水高级中学2022-2023学年高三下第一次测试数学试题含解析.doc_第1页
第1页 / 共22页
浙江省桐庐分水高级中学2022-2023学年高三下第一次测试数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《浙江省桐庐分水高级中学2022-2023学年高三下第一次测试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《浙江省桐庐分水高级中学2022-2023学年高三下第一次测试数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为虚数单位,若复数,则ABCD2已知双曲线的左、右焦点分别为,P是双曲线E上的一点,且.若直线与双

2、曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为( )ABCD3如图,在中,点为线段上靠近点的三等分点,点为线段上靠近点的三等分点,则( )ABCD4在关于的不等式中,“”是“恒成立”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5设过定点的直线与椭圆:交于不同的两点,若原点在以为直径的圆的外部,则直线的斜率的取值范围为( )ABCD6在各项均为正数的等比数列中,若,则( )AB6C4D57已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )ABCD8某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为0

3、01,002,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( )A324B522C535D5789设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD10若直线不平行于平面,且,则( )A内所有直线与异面B内只存在有限条直线与共面C内存在唯一的直线与平行D内存在无数条直线与相交11年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是( )A月下

4、旬新增确诊人数呈波动下降趋势B随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C月日至月日新增确诊人数波动最大D我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值12若,则的虚部是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)函数的定义域是_14甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“”表示猜测某人获奖,“”表示猜测某人未获奖,而“”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_.甲获奖乙获奖丙获奖丁获奖甲的猜测乙的猜测丙的猜测丁的猜测15在中,内角所对的边

5、分别为,若 ,的面积为,则_ ,_16在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有_种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四边形中,沿对角线将翻折成,使得. (1)证明:;(2)求直线与平面所成角的正弦值.18(12分)如图,在平行四边形中,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.(1)求证:;(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.19(12分)已知,点分别

6、为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.()求椭圆的方程;()设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.20(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.21(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值22(10分)唐诗是中国文学的瑰宝.为了研究计算机上唐诗分类工作中检索关键

7、字的选取,某研究人员将唐诗分成7大类别,并从全唐诗48900多篇唐诗中随机抽取了500篇,统计了每个类别及各类别包含“花”、“山”、“帘”字的篇数,得到下表:爱情婚姻咏史怀古边塞战争山水田园交游送别羁旅思乡其他总计篇数100645599917318500含“山”字的篇数5148216948304271含“帘”字的篇数2120073538含“花”字的篇数606141732283160(1)根据上表判断,若从全唐诗含“山”字的唐诗中随机抽取一篇,则它属于哪个类别的可能性最大,属于哪个类别的可能性最小,并分别估计该唐诗属于这两个类别的概率;(2)已知检索关键字的选取规则为:若有超过95%的把握判断“

8、某字”与“某类别”有关系,则“某字”为“某类别”的关键字;若“某字”被选为“某类别”关键字,则由其对应列联表得到的的观测值越大,排名就越靠前;设“山”“帘”“花”和“爱情婚姻”对应的观测值分别为,.已知,请完成下面列联表,并从上述三个字中选出“爱情婚姻”类别的关键字并排名.属于“爱情婚姻”类不属于“爱情婚姻”类总计含“花”字的篇数不含“花”的篇数总计附:,其中.0.050.0250.0103.8415.0246.635参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为,所以,故选B2、C【解析】由双曲线定义得,OM是

9、的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.由,得. 由,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.3、B【解析】,将,代入化简即可.【详解】.故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.4、C【解析】讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:

10、当时,由开口向上,则恒成立;当恒成立时,若,则 不恒成立,不符合题意,若 时,要使得恒成立,则 ,即 .所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件.5、D【解析】设直线:,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,由,得,解得或,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,

11、通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题6、D【解析】由对数运算法则和等比数列的性质计算【详解】由题意故选:D【点睛】本题考查等比数列的性质,考查对数的运算法则掌握等比数列的性质是解题关键7、C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.8、D【解析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6

12、行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.9、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点

13、的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.10、D【解析】通过条件判断直线与平面相交,于是可以判断ABCD的正误.【详解】根据直线不平行于平面,且可知直线与平面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.11、D【解析】根据新增确诊曲线的走势可判断A选项的正误;

14、根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考

15、查数据处理能力,属于基础题.12、D【解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】要使函数有意义,则,即,解得,故函数的定义域是14、乙、丁【解析】本题首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测

16、正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.15、 【解析】由已知及正弦定理,三角函数恒等变换的应用可得,从而求得,结合范围,即可得到答案运用余弦定理和三角形面积公式,结合完全平方公式,即可得到答案【详解】由已知及正弦定理可得,可得:解得,即,由面积公式可得:,即由余弦定理可得:即有解得【点

17、睛】本题主要考查了运用正弦定理、余弦定理和面积公式解三角形,题目较为基础,只要按照题意运用公式即可求出答案16、【解析】首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生、名女医生,故选派的方法为:.故答案为【点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(

18、1)见证明;(2)【解析】(1)取的中点,连.可证得,于是可得平面,进而可得结论成立(2)运用几何法或向量法求解可得所求角的正弦值【详解】(1)证明:取的中点,连.,又,.在中,又,平面,又平面,.(2)解法1:取的中点,连结,,又,又由题意得为等边三角形,平面作,则有平面,就是直线与平面所成的角设,则,在等边中,又在中,故在中,由余弦定理得,直线与平面所成角的正弦值为解法2:由题意可得,建立如图所示的空间直角坐标系.不妨设,则在直角三角形中,可得,作于,则有平面几何知识可得,又可得,.,设平面的一个法向量为,由,得,令,则得又,设直线与平面所成的角为,则所以直线与平面所成角的正弦值为【点睛】

19、利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角求解时注意向量的夹角与线面角间的关系18、(1)证明见解析;(2)【解析】(1)根据余弦定理,可得,利用/,可得/平面,然后利用线面平行的性质定理,/,最后可得结果.(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.【详解】(1)不妨设,则,在中,,则,因为,所以,因为/,且A、B、M、N四点共面,所以

20、/平面.又平面平面,所以/.而,.(2)因为平面平面,且,所以平面,因为,所以平面,因为,平面与平面夹角为,所以,在中,易知N为的中点,如图,建立空间直角坐标系,则,设平面的一个法向量为,则由,令,得.设与平面所成角为,则.【点睛】本题考查线面平行的性质定理以及线面角,熟练掌握利用建系的方法解决几何问题,将几何问题代数化,化繁为简,属中档题.19、();().【解析】()由题意可知:由,求得点坐标,即可求得椭圆的方程;()设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围【详解】解:()根据题意是等腰直角三角形,设由得则代入椭圆方程得椭圆的方

21、程为()根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即 由得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题20、(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,

22、平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)单调递增区间是(0,e),单调递减区间是(e,+)(2)【解析】(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f(x)lnxmx0有两个正根,由此得到m(x2x1)lnx2lnx1,m(x2+x1)lnx2+lnx1,消参数m化简整理可得ln(x1x2)ln,设

23、t,构造函数g(t)()lnt,利用导数判断函数的单调性,求出函数的最大值即可求出x1x2的最大值【详解】(1)令m2,函数h(x),h(x),令h(x)0,解得xe,当x(0,e)时,h(x)0,当x(e,+)时,h(x)0,函数h(x)单调递增区间是(0,e),单调递减区间是(e,+)(2)f(x)u(x)v(x)xlnxx+1,f(x)1+lnxmx1lnxmx,函数f(x)恰有两个极值点x1,x2,f(x)lnxmx0有两个不等正根,lnx1mx10,lnx2mx20,两式相减可得lnx2lnx1m(x2x1),两式相加可得m(x2+x1)lnx2+lnx1,ln(x1x2)ln,设t

24、,1e,1te,设g(t)()lnt,g(t),令(t)t212tlnt,(t)2t2(1+lnt)2(t1lnt),再令p(t)t1lnt,p(t)10恒成立,p(t)在(1,e单调递增,(t)p(t)p(1)11ln10,(t)在(1,e单调递增,g(t)(t)(1)112ln10,g(t)在(1,e单调递增,g(t)maxg(e),ln(x1x2),x1x2故x1x2的最大值为【点睛】本题考查了利用导数求函数的最值和最值,考查了函数与方程的思想,转化与化归思想,属于难题22、(1)该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小;属于“山水田园”类别的概率约为;属于“

25、其他”类别的概率约为(2)填表见解析;选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”【解析】(1)根据统计图表算出频率,比较大小即可判断;(2)根据统计图表完成列联表,算出观测值,查表判断.【详解】(1)由上表可知,该唐诗属于“山水田园”类别的可能性最大,属于“其他”类别的可能性最小属于“山水田园”类别的概率约为;属于“其他”类别的概率约为;(2)列联表如下:属于“爱情婚姻”类不属于“爱情婚姻”类共计含“花”的篇数60100160不含“花”的篇数40300340共计100400500计算得:;因为,所以有超过95%的把握判断“花”字和“帘”字均与“爱情婚姻”有关系,故“花”和“帘”是“爱情婚姻”的关键字,而“山”不是;又因为,故选择“花”,“帘”作为“爱情婚姻”类别的关键字,且排序为“花”,“帘”.【点睛】本题主要考查统计图表、频率与概率的关系、用样本估计总体、独立性检验等知识点.考查了学生对统计图表的识读与计算能力,考查了学生的数据分析、数学运算等核心素养.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁