《江苏省苏州市太仓达标名校2023届中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市太仓达标名校2023届中考联考数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD2如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A10B15C20D303关于x的一元一次不等式2的解集为x
2、4,则m的值为( )A14B7C2D24七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大5能说明命题“对于任何实数a,|a|a”是假命题的一个反例可以是()Aa2BaCa1Da6要使式子有意义,的取值范围是( )AB且C. 或D 且7如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积
3、为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律则第(6)个图形中面积为1的正方形的个数为( )A20B27C35D408在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份9如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A2B0C1D310下列几何体中,其三视图都是全等图形的是()A圆柱B圆锥C三棱锥D球二、填空题(本大题共6个小题,每小题3分,共18分)11若点(,1)与(2,b)关于原点对称,则=_12将直尺和直角三角尺按如图方式摆放若,则_ 13关于x的
4、一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_14已知一次函数yax+b,且2a+b1,则该一次函数图象必经过点_15在数轴上与表示的点距离最近的整数点所表示的数为_16如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 三、解答题(共8题,共72分)17(8分)(1)(ab)2a(a2b)+(2a+b)(2ab)(2)(m1)18(8分)解方程:(1)x27x180(2)3x(x1)22x19(8分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情
5、况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整)请根据图中信息,解答下列问题:此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数20(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题: , ;扇形统计图中机器人项目所对应扇形的圆心角度数为 ;从选航模项目的4名学生中随机选取2名
6、学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.21(8分)已知:如图1在RtABC中,C=90,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQPC为菱形?若存在,求出此时t的值;
7、若不存在,请说明理由22(10分)如图,已知函数(x0)的图象经过点A、B,点B的坐标为(2,2)过点A作ACx轴,垂足为C,过点B作BDy轴,垂足为D,AC与BD交于点F一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E若AC=OD,求a、b的值;若BCAE,求BC的长23(12分)已知:如图,在直角梯形ABCD中,ADBC,ABC=90,DEAC于点F,交BC于点G,交AB的延长线于点E,且AE=AC求证:BG=FG;若AD=DC=2,求AB的长24已知,ABC中,A=68,以AB为直径的O与AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的
8、大小参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据函数的图象和交点坐标即可求得结果【详解】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用2、B【解析】由三视图可知此几何体为圆锥,圆锥的底面半径为3,母线长为5,圆锥的底面周长等于圆锥的侧面展开扇形的弧长,圆锥的底面周长=圆锥的侧面展开扇形的弧长=2r=23=6,圆锥的侧面积=lr=65=15,故选B3、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集
9、为x4,m+3=4,解得m=1故选D考点:不等式的解集4、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键5、A【解析】将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,此时,当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,
10、此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,此时,当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.6、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.7、B【解析】试题解
11、析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,按此规律,第n个图形中面积为1的正方形有2+3+4+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个故选B考点:规律型:图形变化类.8、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B9、B【解析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a
12、的值,最后求所有符合条件的值之和即可【详解】由关于y的不等式组,可整理得 该不等式组解集无解,2a+42即a3又得x而关于x的分式方程有负数解a41a4于是3a4,且a 为整数a3、2、1、1、1、2、3则符合条件的所有整数a的和为1故选B【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键10、D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.
13、点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】点(a,1)与(2,b)关于原点对称,b=1,a=2,=故答案为考点:关于原点对称的点的坐标12、80.【解析】由于直尺外形是矩形,根据矩形的性质可知对边平行,所以4=3,再根据外角的性质即可求出结果.【详解】解:如图所示,依题意得:4=3,4=2+1=803=80.故答案为80.【点睛】本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.13、k2且k1【解析】试题解析:关于x的一元二次方程(k-1)x2-2x+1=0
14、有两个不相等的实数根,k-10且=(-2)2-4(k-1)0,解得:k2且k1考点:1.根的判别式;2.一元二次方程的定义14、(2,1)【解析】一次函数y=ax+b, 当x=2,y=2a+b,又2a+b=1,当x=2,y=1,即该图象一定经过点(2,1).故答案为(2,1)15、3【解析】3.317,且在3和4之间,3.317-3=0.317,4-3.317=0.683,且0.6830.317,距离整数点3最近16、【解析】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以三、解答题(共8题,共72分)17、(1) ;(2) 【解析】试题分析:(1)先去括号,再合并同类项即可;(2)
15、先计算括号里的,再将除法转换在乘法计算.试题解析:(1)(ab)2a(a2b)+(2a+b)(2ab)=a22ab+b2a2+2ab+4a2b2=4a2;(2)= = = =18、(1)x19,x22;(2)x11,x2 【解析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】解:(1)x27x180,(x9)(x+2)0, x90,x+20, x19,x22;(2)3x(x1)22x,3x(x1)+2(x1)0,(x1)(3x+2)0,x10,3x+20,x11,x2 【点睛】本题考查了解一元二次方程,熟练
16、掌握因式分解法是解此题的关键19、(1)120;(2)54;(3)详见解析(4)1【解析】(1)根据B的人数除以占的百分比即可得到总人数;(2)先根据题意列出算式,再求出即可;(3)先求出对应的人数,再画出即可;(4)先列出算式,再求出即可【详解】(1)(25+23)40%=120(名),即此次共调查了120名学生,故答案为120;(2)360=54,即扇形统计图中D所在扇形的圆心角为54,故答案为54;(3)如图所示:;(4)800=1(人),答:估计对食品安全知识“非常了解”的学生的人数是1人【点睛】本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图
17、结合是解题的关键20、(1),; (2);(3).【解析】试题分析:(1)利用航模小组先求出数据总数,再求出n .(2)小组所占圆心角=;(3)列表格求概率.试题解析:(1);(2);(3)将选航模项目的名男生编上号码,将名女生编上号码. 用表格列出所有可能出现的结果:由表格可知,共有种可能出现的结果,并且它们都是第可能的,其中“名男生、名女生”有种可能.(名男生、名女生).(如用树状图,酌情相应给分)考点:统计与概率的综合运用.21、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【解析】(1)只要证明APQABC,可得=,构建方
18、程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t)
19、,解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题22、(1)a=,b=2;(2)BC=【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tanADF=,tanAEC=,进而求出m的值,即可得出答案试题解析:(1)点B(2,2)在函数y=(x0)的图象上,k=4,则y=,BDy轴,D点的坐标为:(
20、0,2),OD=2,ACx轴,AC=OD,AC=3,即A点的纵坐标为:3,点A在y=的图象上,A点的坐标为:(,3),一次函数y=ax+b的图象经过点A、D,解得:,b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),BDCE,且BCDE,四边形BCED为平行四边形,CE=BD=2,BDCE,ADF=AEC,在RtAFD中,tanADF=,在RtACE中,tanAEC=,=,解得:m=1,C点的坐标为:(1,0),则BC=考点:反比例函数与一次函数的交点问题.23、(1)证明见解析;(2)AB=【解析】(1)证明:,DEAC于点F,ABC=AFEAC=AE,EAF=CAB,AB
21、CAFEAB=AF连接AG,AG=AG,AB=AFRtABGRtAFGBG=FG(2)解:AD=DC,DFACE=30FAD=E=30AB=AF=24、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+DEB=180,CED+DEB=180,CED=A,A=68,CED=68()连接AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题