《浙江省绍兴市越城区重点中学2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江省绍兴市越城区重点中学2023年中考数学仿真试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1方程x2kx+1=0有两个相等的实数根,则k的值是()A2B2C2D02如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,
2、以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)3在3,0,4,这四个数中,最大的数是( )A3B0C4D4太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km都需付8元车费),超过3km以后,每增加1km,加收1.6元(不足1km按1km计),某人从甲地到乙地经过的路程是xkm,出租车费为16元,那么x的最大值是()A11B8C7D55一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD6计算(x
3、2)(x+5)的结果是Ax2+3x+7Bx2+3x+10Cx2+3x10Dx23x107分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-18下列运算正确的是()A(a3)2=a29B()1=2Cx+y=xyDx6x2=x39下列运算正确的是()Ax3+x3=2x6Bx6x2=x3C(3x3)2=2x6Dx2x3=x110二次函数y=x2+bx1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x22x1t=0(t为实数)在1x4的范围内有实数解,则t的取值范围是At2B2t7C2t2D2t7二、填空题(本大题共6个小题,每小题3分,共18分)11若关于x
4、的一元二次方程(a1)x2x+1=0有实数根,则a的取值范围为_12如图,已知,第一象限内的点A在反比例函数y的图象上,第四象限内的点B在反比例函数y的图象上且OAOB,OAB60,则k的值为_13如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将CDO以C为旋转中心逆时针旋转90后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_14如图,长方形纸片ABCD中,AB=4,BC=6,将ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则AFC的面积等于_15大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度
5、从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_16分解因式(xy1)2(x+y2xy)(2xy)=_三、解答题(共8题,共72分)17(8分)文艺复兴时期,意大利艺术大师达芬奇研究过用圆弧围成的部分图形的面积问题已知正方形的边长是2,就能求出图中阴影部分的面积证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= 18(8分)已知点O是正方形ABCD对角线BD的中点(1)如图1,若点E是OD的中点,点F是AB上一点,且使得CEF=90,过点E作MEAD,交AB于点M,交CD于点NAEM=F
6、EM; 点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EFCE,交AB于点F,当时,请猜想的值(请直接写出结论)19(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F(1)求证:ABFEDF;(2)若AB=6,BC=8,求AF的长.20(8分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距例:如图,在ABC中,D为边BC的中点,AEBC于E,则线段DE的长叫做边BC的中垂距(1)设三角形一边的中垂距为d(d0)
7、若d=0,则这样的三角形一定是 ,推断的数学依据是 .(2)如图,在ABC中,B=15,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距(3)如图,在矩形ABCD中,AB=6,AD=1点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC求ACF中边AF的中垂距21(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN22(10分)如图,一次函数ykxb的图象与反比例函数y的图象交于点A(3,m8),B(n,6)两点求一次函数与反比例函数的解析式;求AOB的面积23(12分)如图,在平面直
8、角坐标系中,一次函数yx+3的图象与反比例函数y(x0,k是常数)的图象交于A(a,2),B(4,b)两点求反比例函数的表达式;点C是第一象限内一点,连接AC,BC,使ACx轴,BCy轴,连接OA,OB若点P在y轴上,且OPA的面积与四边形OACB的面积相等,求点P的坐标24如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:ACMABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积. 参考答案一、
9、选择题(共10小题,每小题3分,共30分)1、C【解析】根据已知得出=(k)2411=0,解关于k的方程即可得【详解】方程x2kx+1=0有两个相等的实数根,=(k)2411=0,解得:k=2,故选C【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a0),当b24ac0时,方程有两个不相等的实数根;当b24ac=0时,方程有两个相等的实数根;当b24ac0时,方程无实数根2、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得
10、答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(41+a1,b1),1010=4501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐
11、标,得到规律是解题关键3、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小因此,在3,0,1,这四个数中,301,最大的数是1故选C4、B【解析】根据等量关系,即(经过的路程3)1.6+起步价2元1列出不等式求解【详解】可设此人从甲地到乙地经过的路程为xkm,根据题意可知:(x3)1.6+21,解得:x2即此人从甲地到乙地经过的路程最多为2km故选B【点睛】考查了一元一次方程的应用关键是掌握正确理解题意,找出题目中的数量关系5、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.6、C【解析
12、】根据多项式乘以多项式的法则进行计算即可.【详解】 故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.7、A【解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2两个条件需同时具备,缺一不可据此可以解答本题【详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-3故选:A【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件8、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a3)2=a26a+9,故该选项错
13、误;B. ()1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.9、D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6a2a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(3a3)29a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2x3
14、=x1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.10、B【解析】利用对称性方程求出b得到抛物线解析式为y=x22x1,则顶点坐标为(1,2),再计算当1x4时对应的函数值的范围为2y7,由于关于x的一元二次方程x22x1t=0(t为实数)在1x4的范围内有实数解可看作二次函数y=x22x1与直线y=t有交点,然后利用函数图象可得到t的范围【详解】抛物线的对称轴为直线x=1,解得b=2,抛物线解析式为y=x22x1,则顶点坐标为(1,2),当x=1时,y=x22x1=2;当x=4时,y=x22x1=7,当1x4时,2y7,
15、而关于x的一元二次方程x22x1t=0(t为实数)在1x4的范围内有实数解可看作二次函数y=x22x1与直线y=t有交点,2t7,故选B【点睛】本题考查了二次函数的性质、抛物线与x轴的交点、二次函数与一元二次方程,把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、a且a1【解析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可【详解】由题意得:0,即(-1)2-4(a-1)10,解得a,又a-10,a且a1.故答案为a且a1.点睛:本题考查的是
16、根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键12、-6【解析】如图,作ACx轴,BDx轴,OAOB,AOB=90,OAC+AOC=90,AOC+BOD=90,OAC=BOD,ACOODB,OAB=60,设A(x,),BD=OC=x,OD=AC=,B(x,-),把点B代入y=得,-=,解得k=-6,故答案为-6.13、(4,2)【解析】利用图象旋转和平移可以得到结果.【详解】解:CDO绕点C逆时针旋转90,得到CBD,则BD=OD=2,点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到OAD,点D向下平移4个单位故点D坐标为(4,2),故答案为
17、(4,2)【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.14、【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD/BC,由平行线的性质和折叠的性质可得DAC=ACE,可得AF=CF,由勾股定理可求AF的长,即可求AFC的面积【详解】解:四边形ABCD是矩形,折叠,在中,.故答案为:.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF的长是本题的关键15、y16
18、080x(0x2)【解析】根据汽车距庄河的路程y(千米)原来两地的距离汽车行驶的距离,解答即可.【详解】解:汽车的速度是平均每小时80千米,它行驶x小时走过的路程是80x,汽车距庄河的路程y16080x(0x2),故答案为:y16080x(0x2).【点睛】本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键16、(y1)1(x1)1【解析】解:令x+y=a,xy=b,则(xy1)1(x+y1xy)(1xy)=(b1)1(a1b)(1a)=b11b+1+a11a1ab+4b=(a11ab+b1)+1b1a+1=(ba)1+1(ba)+1=(ba+1)1;即原式=(xyx
19、y+1)1=x(y1)(y1)1=(y1)(x1)1=(y1)1(x1)1故答案为(y1)1(x1)1点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(1)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题(共8题,共72分)17、S1,S3,S4,S5,1【解析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1
20、+S3=1故答案为S1,S3,S4,S5,1【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.18、(1)证明见解析;证明见解析;(2)EFC是等腰直角三角形理由见解析;(3)【解析】试题分析:(1)过点E作EGBC,垂足为G,根据ASA证明CEGFEM得CE=FE,再根据SAS证明ABECBE 得AE=CE,在AEF中根据等腰三角形“三线合一”即可证明结论成立;设AM=x,则AF=2x,在RtDEN中,EDN=45,DE=DN=x, DO=2DE=2x,BD=2DO=4x在RtABD中,ADB=45,AB=BDsin45=4x,又AF=2x,从而A
21、F=AB,得到点F是AB的中点;(2)过点E作EMAB,垂足为M,延长ME交CD于点N,过点E作EGBC,垂足为G则AEMCEG(HL),再证明AMEFME(SAS),从而可得EFC是等腰直角三角形(3)方法同第(2)小题过点E作EMAB,垂足为M,延长ME交CD于点N,过点E作EGBC,垂足为G则AEMCEG(HL),再证明AEMFEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=试题解析:(1)过点E作EGBC,垂足为G,则四边形MBGE为正方形,ME=GE,MFG=90,即MEF+FEG=90,又CEG+FEG=90,CEG=
22、FEM又GE=ME,EGC=EMF=90,CEGFEMCE=FE,四边形ABCD为正方形,AB=CB,ABE=CBE=45,BE=BE,ABECBEAE=CE,又CE=FE,AE=FE,又EMAB, AEM=FEM设AM=x,AE=FE,又EMAB,AM=FM=x,AF=2x,由四边形AMND为矩形知,DN=AM=x,在RtDEN中,EDN=45,DE=DN=x,DO=2DE=2x,BD=2DO=4x在RtABD中,ADB=45,AB=BDsin45=4x=4x,又AF=2x,AF=AB,点F是AB的中点(2)EFC是等腰直角三角形过点E作EMAB,垂足为M,延长ME交CD于点N,过点E作EG
23、BC,垂足为G则AEMCEG(HL),AEM=CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6xAB=6x,又,AF=2x,又AM=x,AM=MF=x,AMEFME(SAS),AE=FE,AEM=FEM,又AE=CE,AEM=CEG,FE=CE,FEM=CEG,又MEG=90,MEF+FEG=90,CEG+FEG=90,即CEF=90,又FE=CE,EFC是等腰直角三角形(3)过点E作EMAB,垂足为M,延长ME交CD于点N,过点E作EGBC,垂足为G则AEMCEG(HL),AEM=CEG EFCE,FEC =90,CEG+FEG=90又MEG =90,M
24、EF+FEG=90,CEG=MEF,CEG =AEF,AEF=MEF,AEMFEM (ASA),AM=FM设AM=x,则AF=2x,DN =x,DE=x,BD=xAB=x=2x:x=考点:四边形综合题.19、(1)见解析;(2) 【解析】(1)根据矩形的性质可得AB=CD,C=A=90,再根据折叠的性质可得DE=CD,C=E=90,然后利用“角角边”证明即可;(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可【详解】(1)证明:在矩形ABCD中,AB=CD,A=C=90,由折叠得:DE=CD,C=E=90,AB=DE,A=E=90,AFB=EFD,ABFEDF(AAS);(2)
25、解:ABFEDF,BF=DF,设AF=x,则BF=DF=8x,在RtABF中,由勾股定理得:BF2=AB2+AF2,即(8x)2=x2+62, x=,即AF=【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键20、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3). 【解析】试题分析:(1)根据线段的垂直平分线的性质即可判断(2)如图中,作AEBC于E根据已知得出AE=BE,再求出BD的长,即可求出DE的长(3)如图中,作CHAF于H,先证ADEFCE,得出AE=EF,利用勾股
26、定理求出AE的长,然后证明ADECHE,建立方程求出EH即可解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等(2)解:如图中,作AEBC于E在RtABE中,AEB=90,B=15,AB=3 ,AE=BE=3,AD为BC边中线,BC=8,BD=DC=1,DE=BDBE=13=1,边BC的中垂距为1(3)解:如图中,作CHAF于H四边形ABCD是矩形,D=EHC=ECF=90,ADBF,DE=EC,AED=CEF,ADEFCE,AE=EF,在RtADE中,AD=1,DE=3,AE= =5,D=EHC,AED=CEH,ADECHE, = , = ,EH= ,ACF中边AF的中垂距为 21
27、、证明见解析.【解析】试题分析:作于点F,然后证明 ,从而求出所所以BM与CN的长度相等试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EFBC于点F,则有AB=AE=EF=FC, AEM=FEN,在RtAME和RtFNE中,E为AB的中点,AB=CF,AEM=FEN,AE=EF,MAE=NFE,RtAMERtFNE,AM=FN,MB=CN.22、(1)y=-,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2
28、)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据SAOB=SAOC+SBOC列式计算即可得解试题解析:(1)将A(3,m+8)代入反比例函数y=得,=m+8,解得m=6,m+8=6+8=2,所以,点A的坐标为(3,2),反比例函数解析式为y=,将点B(n,6)代入y=得,=6,解得n=1,所以,点B的坐标为(1,6),将点A(3,2),B(1,6)代入y=kx+b得,解得,所以,一次函数解析式为y=2x1;(2)设AB与x轴相交于点C,令2x1=0解得x=2,所以,点C的坐标为(2,0),所以,OC=2,SAOB=SAOC+SBOC,=23+21,=3+
29、1,=1考点:反比例函数与一次函数的交点问题23、 (1) 反比例函数的表达式为y(x0);(2) 点P的坐标为(0,4)或(0,4)【解析】(1)根据点A(a,2),B(4,b)在一次函数yx+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACBS矩形OECFSOAESOBF,设点P(0,m),根据反比例函数的几何意义解答即可【详解】(1)点A(a,2),B(4,b)在一次函数yx+3的图象上,a+32,b4+3,a2,b1,点A的坐标为(2,2),点B的坐标为(4,1),又点A(2
30、,2)在反比例函数y的图象上,k224,反比例函数的表达式为y(x0);(2)延长CA交y轴于点E,延长CB交x轴于点F,ACx轴,BCy轴,则有CEy轴,CFx轴,点C的坐标为(4,2)四边形OECF为矩形,且CE4,CF2,S四边形OACBS矩形OECFSOAESOBF2422414,设点P的坐标为(0,m),则SOAP2|m|4,m4,点P的坐标为(0,4)或(0,4)【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键24、(1)证明见解析;(2)证明见解析;(3)74.【解析】(1
31、)根据四边形ABCD和四边形AEMN都是正方形得,CAB=MAC=45,BAE=CAM,可证ACMABE;(2)连结AC,由ACMABE得ACM=B=90,易证MCD=BDC=45,得BDCM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【详解】(1)证明:四边形ABCD和四边形AEMN都是正方形,CAB=MAC=45,CAB-CAE=MAC-CAE,BAE=CAM,ACMABE.(2)证明:连结AC因为ACMABE,则ACM=B=90,因为ACB=ECF=45,所以ACM+ACB+ECF=180,所以点M,C,F在同一直线上,所以MCD=BDC=45,所以BD平行MF,又因为MC=BE,FC=CE,所以MF=BC=BD,所以四边形BFMD是平行四边形(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+ 26=74.【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度