河北省沧州市盐山县2023年中考数学适应性模拟试题含解析.doc

上传人:lil****205 文档编号:88307185 上传时间:2023-04-25 格式:DOC 页数:14 大小:670.50KB
返回 下载 相关 举报
河北省沧州市盐山县2023年中考数学适应性模拟试题含解析.doc_第1页
第1页 / 共14页
河北省沧州市盐山县2023年中考数学适应性模拟试题含解析.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《河北省沧州市盐山县2023年中考数学适应性模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省沧州市盐山县2023年中考数学适应性模拟试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算正确的是()A(2a)22a2Ba6a3a2C2(a1)22aDaa2a22两个有理数的和为零,则这两个数一定是()A都是零B至少有一个是零C一个是正数,一个是负数D互为相反数3已知关于x的不等式axb的解为x-2,则下列关于x的不等式中,解为x2的是( )Aax+2-b+2Bax-

2、1b-1CaxbD4汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t5t2,汽车刹车后停下来前进的距离是()A10m B20m C30m D40m5如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90BOE=BECBD=BCD6若3x3y,则下列不等式中一定成立的是 ( )ABCD7世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.561018如图,从正方形纸片的顶点沿虚线剪开,则1的度数可能是( )A44

3、B45C46D479如图,小明将一张长为20cm,宽为15cm的长方形纸(AEDE)剪去了一角,量得AB3cm,CD4cm,则剪去的直角三角形的斜边长为()A5cmB12cmC16cmD20cm10如图,O内切于正方形ABCD,边BC、DC上两点M、N,且MN是O的切线,当AMN的面积为4时,则O的半径r是()AB2C2D4二、填空题(共7小题,每小题3分,满分21分)11如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DFAE,垂足为F,则tanFDC=_12图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙)图乙种,EF=4cm

4、,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为_cm13图,A,B是反比例函数y=图象上的两点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_14如图,AB、CD相交于点O,ADCB,请你补充一个条件,使得AODCOB,你补充的条件是_15点A(x1,y1)、B(x1,y1)在二次函数y=x14x1的图象上,若当1x11,3x14时,则y1与y1的大小关系是y1_y1(用“”、“”、“=”填空)16抛物线y=x2+4x1的顶点坐标为 17已知,则_三、解答题(共7小题,满分69分)18(10分

5、)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.19(5分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数的

6、图象上,过点A的直线y=x+b交x轴于点B求k和b的值;求OAB的面积20(8分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45方向,然后沿北偏东37方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离(结果保留整数)参考数据:sin370.60,cos37=0.80,tan370.7521(10分)解不等式组: .22(10分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元(1)求购进甲、乙两种纪念品每件

7、各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?23(12分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当ACAB时,求证:k为定值.24

8、(14分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:选项A,原式=;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D, 原式=故选C2、D【解析】解:互为

9、相反数的两个有理数的和为零,故选DA、C不全面B、不正确3、B【解析】关于x的不等式axb的解为x-2,a0,且,即,(1)解不等式ax+2-b+2可得:ax2;(2)解不等式ax-1b-1可得:-axb,即xb可得:,即x-2;(4)解不等式可得:,即;解集为x2的是B选项中的不等式.故选B.4、B【解析】利用配方法求二次函数最值的方法解答即可【详解】s=20t-5t2=-5(t-2)2+20,汽车刹车后到停下来前进了20m故选B【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键5、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90,故

10、A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键6、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A7、B【解析】0.056用科学记数法表示为:0.056=,故选B.8、A【解析】连接正方形的对角线,然后依据正方形的性质进行判断即可【详解】解:如图所示:四边形为正方形,14511145故选:A【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键9、D【解析】解答此题要延长AB、DC相

11、交于F,则BFC构成直角三角形,再用勾股定理进行计算【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1则剪去的直角三角形的斜边长为1cm故选D【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算10、C【解析】连接,交于点设则根据AMN的面积为4,列出方程求出的值,再计算半径即可.【详解】连接,交于点 内切于正方形 为的切线,经过点 为等腰直角三角形, 为的切线, 设则 AMN的面积为4,则 即解得 故选:C.【点睛】考查圆的切线的性质,等腰直角

12、三角形的性质,三角形的面积公式,综合性比较强.二、填空题(共7小题,每小题3分,满分21分)11、【解析】首先根据矩形的性质以及垂线的性质得到FDCABE,进而得出tanFDCtanAEB,即可得出答案.【详解】DFAE,垂足为F,AFD90,ADFDAF90,ADFCDF90,DAFCDF,DAFAEB,FDCABE,tanFDCtanAEB,在矩形ABCD中,AB4,E是BC上的一点,BE3,tanFDC.故答案为.【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tanFDCtanAEB是解题关键.12、【解析】试题分析:根据,EF=4可得:AB=和BC的长度,根据阴影

13、部分的面积为54可得阴影部分三角形的高,然后根据菱形的性质可以求出小菱形的边长为,则菱形的周长为:4=.考点:菱形的性质.13、1【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据AOD的面积为3,列出关系式求得k的值解:设点D坐标为(a,b),点D为OB的中点,点B的坐标为(2a,2b),k=4ab,又ACy轴,A在反比例函数图象上,A的坐标为(4a,b),AD=4aa=3a,AOD的面积为3,3ab=3,ab=2,k=4ab=42=1故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据AOD的面

14、积为1列出关系式是解题的关键14、AC或ADCABC【解析】本题证明两三角形全等的三个条件中已经具备一边和一角,所以只要再添加一组对应角或边相等即可【详解】添加条件可以是:AC或ADCABC添加AC根据AAS判定AODCOB,添加ADCABC根据AAS判定AODCOB,故填空答案:AC或ADCABC【点睛】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解题的关键15、【解析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点

15、的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,1x11,3x14,A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,y1y1故答案为16、(2,3)【解析】试题分析:利用配方法将抛物线的解析式y=x2+4x1转化为顶点式解析式y=(x2)2+3,然后求其顶点坐标为:(2,3)考点:二次函数的性质17、3【解析】依据可设a=3k,b=2k,代入化简即可【详解】,可设a=3k,b=2k,=3故答案为3.【点睛】本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项两端的两项叫做比例的

16、外项,中间的两项叫做比例的内项三、解答题(共7小题,满分69分)18、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元(2)有6种购买方案(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台【解析】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确

17、定方案,然后进行比较,做出选择即可【详解】(1)设甲、乙两种型号设备每台的价格分别为万元和万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元;(2)设购买甲型设备台,乙型设备台,则,,取非负整数,有6种购买方案;(3)由题意:,为4或5,当时,购买资金为:(万元),当时,购买资金为:(万元),则最省钱的购买方案是选购甲型设备4台,乙型设备6台.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.19、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一

18、次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题解析:(1)、把x=2,y=5代入y=,得k=25=10把x=2,y=5代入y=x+b,得b=3(2)、y=x+3 当y=0时,x=-3, OB=3 S=35=7.5考点:一次函数与反比例函数的综合问题.20、景点A与B之间的距离大约为280米【解析】由已知作PCAB于C,可得ABP中A=37,B=45且PA=200m,要求AB的长,可以先求出AC和BC的长【详解】解:如图,作PCAB于C,则ACP=BCP=90,由题意,可得A=37,B=45,PA=200m在RtACP中,ACP=90,A=37,AC=

19、APcosA=2000.80=160,PC=APsinA=2000.60=1在RtBPC中,BCP=90,B=45,BC=PC=1AB=AC+BC=160+1=280(米)答:景点A与B之间的距离大约为280米【点睛】本题考查了解直角三角形的应用-方向角问题,对于解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线21、x2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.22、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)有三种进货方案方

20、案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)若全部销售完,方案一获利最大,最大利润是1800元【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元由题意

21、得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元(2)设购进甲种纪念品a(a60)件,则购进乙种纪念品(80a)件由题意得:100a+50(80a)7100解得a1又a60所以a可取60、61、1即有三种进货方案方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件(3)设利润为W,则W=20a+30(80a)=10a+2400所以W是a的一次函数,100,W随a的增大而减小所以当a最小时,W最大此时W=1060+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元点睛:本题考

22、查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.23、 (1) 1x3或x0;(2)证明见解析.【解析】(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;再根据图像直接写出不等式的解集;(2)过A作lx轴,过C作CGl于G,过B作BHl于H, AGCBHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=9,联立,得,根据根与系数的关系得,由此得出为定值.【详解】解:(1)将B(3,1)代入,m=3, ,将B(3,1)代入,,不等式的解集为1x3或x0(2

23、)过A作lx轴,过C作CGl于G,过B作BHl于H,则AGCBHA,设B(m, )、C(n, ), , , mn=9,联立, ,为定值.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.24、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6x4.【解析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(312x)米依题意可列方程x(312x)72,即x215x361解得x13,x22又312x3,即x6,x=2(2)依题意,得8312x3解得6x4面积Sx(312x)2(x)2(6x4)当x时,S有最大值,S最大; 当x4时,S有最小值,S最小4(3122)5 (3)令x(312x)41,得x215x511解得x15,x21 x的取值范围是5x4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁