河南省周口市淮阳县重点达标名校2023年十校联考最后数学试题含解析.doc

上传人:lil****205 文档编号:88307085 上传时间:2023-04-25 格式:DOC 页数:22 大小:1.11MB
返回 下载 相关 举报
河南省周口市淮阳县重点达标名校2023年十校联考最后数学试题含解析.doc_第1页
第1页 / 共22页
河南省周口市淮阳县重点达标名校2023年十校联考最后数学试题含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《河南省周口市淮阳县重点达标名校2023年十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省周口市淮阳县重点达标名校2023年十校联考最后数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,I是ABC的内心,AI向延长线和ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )A线段DB绕点D顺时针旋转一定能与线段DC重合B线段DB绕点D顺时针旋转一定能与线段DI熏合CCAD绕点A顺时针旋转一定能与DAB重合D

2、线段ID绕点I顺时针旋转一定能与线段IB重合2不等式3x2(x+2)的解是()Ax2Bx2Cx4Dx43函数的自变量x的取值范围是( )Ax1Bx1Cx1Dx14如图,是直角三角形,点在反比例函数的图象上若点在反比例函数的图象上,则的值为( )A2B-2C4D-45如图,A、B、C、D四个点均在O上,AOD=70,AODC,则B的度数为( )A40B45C50D556如图,已知12,要使ABDACD,需从下列条件中增加一个,错误的选法是( )AADBADCBBCCABACDDBDC7如图,A、B、C是O上的三点,BAC30,则BOC的大小是()A30B60C90D458如图,在ABCD中,AB

3、1,AC4,对角线AC与BD相交于点O,点E是BC的中点,连接AE交BD于点F若ACAB,则FD的长为()A2B3C4D69如图,将RtABC绕直角项点C顺时针旋转90,得到A BC,连接AA,若1=20,则B的度数是( ) A70B65C60D5510如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A1BC2D二、填空题(本大题共6个小题,每小题3分,共18分)11如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取ABC和DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取A1B1C1和D1E1F1各边中点,连接

4、成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去,则正六角星形A4F4B4D4C4E4的面积为_12如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是_.13如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_14如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为

5、t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )A点M B点N C点P D点Q15计算a10a5=_16如图,若双曲线()与边长为3的等边AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系xOy中,ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)按下列要求作图:将ABC向左平移4个单位,得到A1B1C1;将A1B1C1绕点B1逆时针旋转90,得到A1B1C1求点C1在旋转过程中所经过的路径长18(8分)如图二次函数的图

6、象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;19(8分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FAB=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长20(8分)如图,将边长为m的正方形纸

7、板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积21(8分)如图,在RtABC中,C=90,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长22(10分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB求双曲线的解析式;求点C的坐标,并直接写出y1y2时x的取值范围23(12分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的

8、坡脚A处测得宣传牌底部D的仰角为60,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45已知山坡AB的坡度i1:,(斜坡的铅直高度与水平宽度的比),经过测量AB10米,AE15米,求点B到地面的距离;求这块宣传牌CD的高度(测角器的高度忽略不计,结果保留根号)24如图,AD是ABC的中线,过点C作直线CFAD(问题)如图,过点D作直线DGAB交直线CF于点E,连结AE,求证:ABDE(探究)如图,在线段AD上任取一点P,过点P作直线PGAB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明(应用)在探究的条件下,设PE交AC于点M若点P是AD的中点,且APM的面积为

9、1,直接写出四边形ABPE的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】解:I是ABC的内心,AI平分BAC,BI平分ABC,BAD=CAD,ABI=CBI,故C正确,不符合题意;=,BD=CD,故A正确,不符合题意;DAC=DBC,BAD=DBCIBD=IBC+DBC,BID=ABI+BAD,DBI=DIB,BD=DI,故B正确,不符合题意故选D点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等2、D【解析】不等式先展开再移项即可解答.【详解】解:不等式3x2(x+2),展开得:3x2x+4,移项得:3x-2x4,解之得:x4

10、.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.3、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围试题解析:根据题意得:1-x0,解得:x1故选C考点:函数自变量的取值范围4、D【解析】要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.【详解】过点、作轴,轴,分别于、,设点的坐标是,则,因为点在反比例函数的图象上,则,点在反比例函数的图象上,点的坐标是,.故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,

11、一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.5、D【解析】试题分析:如图,连接OC,AODC,ODC=AOD=70,OD=OC,ODC=OCD=70,COD=40,AOC=110,B=AOC=55故选D考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质6、D【解析】由全等三角形的判定方法ASA证出ABDACD,得出A正确;由全等三角形的判定方法AAS证出ABDACD,得出B正确;由全等三角形的判定方法SAS证出ABDACD,得出C正确由全等三角形的判定方法得出D不正确;【详解】A正确;理由:在ABD和ACD中,1=2,AD=AD,ADB=ADC

12、,ABDACD(ASA);B正确;理由:在ABD和ACD中,1=2,B=C,AD=ADABDACD(AAS);C正确;理由:在ABD和ACD中,AB=AC,1=2,AD=AD,ABDACD(SAS);D不正确,由这些条件不能判定三角形全等;故选:D【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键7、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30,BOC=2BAC =60(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆

13、周角相等,都等于这条弧所对的圆心角的一半8、C【解析】利用平行四边形的性质得出ADFEBF,得出=,再根据勾股定理求出BO的长,进而得出答案【详解】解:在ABCD中,对角线AC、BD相交于O,BO=DO,AO=OC,ADBC,ADFEBF,=,AC=4,AO=2,AB=1,ACAB,BO=3,BD=6,E是BC的中点,=,BF=2, FD=4.故选C.【点睛】本题考查了勾股定理与相似三角形的判定与性质,解题的关键是熟练的掌握勾股定理与相似三角形的判定与性质.9、B【解析】根据图形旋转的性质得AC=AC,ACA=90,B=ABC,从而得AAC=45,结合1=20,即可求解【详解】将RtABC绕直

14、角项点C顺时针旋转90,得到A BC,AC=AC,ACA=90,B=ABC,AAC=45,1=20,BAC=45-20=25,ABC=90-25=65,B=65故选B【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键10、B【解析】连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故=故选:B【点睛】本题考查了正多边形的性质,正确作出辅助线是关键二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】正六角星形A2F2B2D2C2E2边长是

15、正六角星形A1F1B1D1C1E边长的,正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的同理正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的12、k且k1【解析】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11又方程是一元二次方程,k1,k-1/4 且k113、【解析】结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去剩下的面积.【详解】解:原式= 故答案为:【点睛】此题注意结合图形的面积找

16、到计算的方法:其中的面积和等于总面积减去剩下的面积.14、D【解析】D试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D考点:1.动点问题的函数图象分析;2.排他法的应用.15、a1【解析】试题分析:根据同底数幂的除法底数不变指数相

17、减,可得答案原式=a10-1=a1,故答案为a1考点:同底数幂的除法16、【解析】过点C作CEx轴于点E,过点D作DFx轴于点F,设OC=2x,则BD=x,在RtOCE中,COE=60,则OE=x,CE=,则点C坐标为(x,),在RtBDF中,BD=x,DBF=60,则BF=,DF=,则点D的坐标为(,),将点C的坐标代入反比例函数解析式可得:,将点D的坐标代入反比例函数解析式可得:,则,解得:,(舍去),故=故答案为考点:1反比例函数图象上点的坐标特征;2等边三角形的性质三、解答题(共8题,共72分)17、(1)见解析;见解析;(1)1【解析】(1)利用点平移的坐标规律,分别画出点A、B、C

18、的对应点A1、B1、C1的坐标,然后描点可得A1B1C1;利用网格特点和旋转的性质,分别画出点A1、B1、C1的对应点A1、B1、C1即可;(1)根据弧长公式计算【详解】(1)如图,A1B1C1为所作;如图,A1B1C1为所作;(1)点C1在旋转过程中所经过的路径长【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了平移的性质18、(1);(2)或;(3)1.【解析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数

19、值的x的取值范围;(3)分别得出EO,AB的长,进而得出面积【详解】(1)二次函数与轴的交点为和设二次函数的解析式为:在抛物线上,3=a(0+3)(0-1),解得a=-1,所以解析式为:;(2)=x22x3,二次函数的对称轴为直线; 点、是二次函数图象上的一对对称点;使一次函数大于二次函数的的取值范围为或;(3)设直线BD:ymxn,代入B(1,0),D(2,3)得,解得:,故直线BD的解析式为:yx1,把x0代入得,y=3,所以E(0,1),OE1,又AB1,SADE13111【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键19、 (1) ,点D的坐标为

20、(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或. 【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,FAB=EDB, tanFAG=tanBDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.详解:(1)OB=OC=1,B(1,0),C(0,-1).,解得,抛物线的解析式为. =,点D的坐标为(2,-8). (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FGx轴于点G,易求得OA=2,则AG=x+2,FG=.FAB=EDB,tanFAG=tanBDE,即,解得,(舍去).当x=7时,

21、y=,点F的坐标为(7,). 当点F在x轴下方时,设同理求得点F的坐标为(5,).综上所述,点F的坐标为(7,)或(5,). (3)点P在x轴上,根据菱形的对称性可知点P的坐标为(2,0).如图,当MN在x轴上方时,设T为菱形对角线的交点.PQ=MN,MT=2PT.设TP=n,则MT=2n. M(2+2n,n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.当MN在x轴下方时,设TP=n,得M(2+2n,-n).点M在抛物线上,即.解得,(舍去).MN=2MT=4n=.综上所述,菱形对角线MN的长为或. 点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,yax2b

22、xc().列方程组求二次函数解析式.(2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.20、(1)矩形的周长为4m;(2)矩形的面积为1【解析】(1)根据题意和矩形的周长公式列出代数式解答即可(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:mn,矩形的宽为:m+n,矩形的周长为:

23、2(m-n)+(m+n)=4m;(2)矩形的面积为S=(m+n)(mn)=m2-n2,当m=7,n=4时,S=72-42=1【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答21、(1)见解析(2)7.5【解析】(1)只要证明A+B=90,ADE+B=90即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90

24、,ADE+BDO=90,ACB=90,A+B=90,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.22、(1);(1)C(1,4),x的取值范围是x1或0x1【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得

25、:x=1x1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线y1=1x1上,设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0x1【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大23、(1)2;(2)宣传牌CD高(201)m【解析】试题分

26、析:(1)在RtABH中,由tanBAH=i=得到BAH=30,于是得到结果BH=ABsinBAH=1sin30=1=2;(2)在RtABH中,AH=ABcosBAH=1cos30=2在RtADE中,tanDAE=,即tan60=,得到DE=12,如图,过点B作BFCE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DEEF=DEBH=122在RtBCF中,C=90CBF=9042=42,求得C=CBF=42,得出CF=BF=2+12,即可求得结果试题解析:解:(1)在RtABH中,tanBAH=i=,BAH=30,BH=ABsinBAH=1sin30=1=2答:点B距水平面AE的高

27、度BH是2米;(2)在RtABH中,AH=ABcosBAH=1cos30=2在RtADE中,tanDAE=,即tan60=,DE=12,如图,过点B作BFCE,垂足为F,BF=AH+AE=2+12,DF=DEEF=DEBH=122在RtBCF中,C=90CBF=9042=42,C=CBF=42,CF=BF=2+12,CD=CFDF=2+12(122)=201(米)答:广告牌CD的高度约为(201)米24、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.【解析】(1)先根据平行线的性质和等量代换得出13,再利用中线性质得到BDDC,证明ABDEDC,从而证明

28、ABDE(2)方法一:过点D作DNPE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明ABPEPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图 是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形方法一:如图,证明:过点D作交直线于点,四边形是平行四边形,由问题结论可得四边形是平行四边形方法二:如图,证明:延长BP交直线CF于点N,是的中线,四边形是平行四边形【应用】如图,延长BP交CF于H由上面可知,四边形是平行四边形,四边形APHE是平行四边形,【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁