河北石家庄市长安区2023届中考数学考试模拟冲刺卷含解析.doc

上传人:lil****205 文档编号:88306095 上传时间:2023-04-25 格式:DOC 页数:19 大小:874.50KB
返回 下载 相关 举报
河北石家庄市长安区2023届中考数学考试模拟冲刺卷含解析.doc_第1页
第1页 / 共19页
河北石家庄市长安区2023届中考数学考试模拟冲刺卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《河北石家庄市长安区2023届中考数学考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《河北石家庄市长安区2023届中考数学考试模拟冲刺卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A-=20B-=20C-=20D2如表记录了甲、乙、丙、丁

2、四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A甲B乙C丙D丁3tan30的值为()ABCD4下列各曲线中表示y是x的函数的是()ABCD5的值为( )AB-C9D-96如图,点A,B在双曲线y=(x0)上,点C在双曲线y=(x0)上,若ACy轴,BCx轴,且AC=BC,则AB等于()AB2C4D37在平面直角坐标系中,二次函数y=a(xh)2+k(a=,从甲和丙中选择一人参加比赛,=,选择甲参赛,故选A【点睛】此题主要考查了平均数和方差的应用,解题关键是

3、明确平均数越高,成绩越高,方差越小,成绩越稳定.3、D【解析】直接利用特殊角的三角函数值求解即可【详解】tan30,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键4、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确故选D5、A【解析】【分析】根据绝对值的意义进行求解即可得.【详解】表示的是的绝对值,数轴上表示的点到原点的距离是,即的绝对值是,所以的值为 ,故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.6、B【解析】【分析】依据点C在双曲线y=上,ACy轴,BCx轴,可设C(a,),则B(3a

4、,),A(a,),依据AC=BC,即可得到=3aa,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到RtABC中,AB=2【详解】点C在双曲线y=上,ACy轴,BCx轴,设C(a,),则B(3a,),A(a,),AC=BC,=3aa,解得a=1,(负值已舍去)C(1,1),B(3,1),A(1,3),AC=BC=2,RtABC中,AB=2,故选B【点睛】本题主要考查了反比例函数图象上点的坐标特征,注意反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k7、B【解析】根据题目给出的二次函数的表达式,可知二次函数的开口向下,即可得出答案.【

5、详解】二次函数y=a(xh)2+k(a0)二次函数开口向下.即B成立.故答案选:B.【点睛】本题考查的是简单运用二次函数性质,解题的关键是熟练掌握二次函数性质.8、A【解析】试题分析:根据多边形的外角和是310,即可求得多边形的内角的度数为720,依据多边形的内角和公式列方程即可得(n2)180=720,解得:n=1故选A考点:多边形的内角和定理以及多边形的外角和定理9、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判断.详解: EFAB, CEFCAB, ,故选B.点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.10、A【解析】利用位似图形的性质结

6、合对应点坐标与位似比的关系得出C点坐标【详解】以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,A点与C点是对应点,C点的对应点A的坐标为(2,2),位似比为1:2,点C的坐标为:(4,4)故选A【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键11、B【解析】由根与系数的关系逐项判断各项方程的两根之和即可【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,=(-2)2-43=-80,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,

7、两根之和等于-,故D不符合题意,故选B【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键12、B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、3.【解析】试题分析:分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果原式=4-1=3.考点:负整数指数幂;零指数幂

8、14、4.41【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数详解:44000000=4.41,故答案为4.41点睛:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值15、1或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=8,进而求出答案详解:x2+2(m-3)x+16是关于x的完全平方式,2(m-3)=8,解得:m=-1或1

9、,故答案为-1或1点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键16、【解析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知总共有12种结果,每种结果出现的可能性相同挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为【点睛】本题考查的是

10、用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比17、100【解析】先在直角ABE中利用三角函数求出BE和AE,然后在直角ACF中,利用勾股定理求出AC解:如图,作AEBC于点EEAB=30,AB=100,BE=50,AE=50BC=200,CE=1在RtACE中,根据勾股定理得:AC=100即此时王英同学离A地的距离是100米故答案为100解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线18、22.5【解析】四边形ABCD是矩

11、形,AC=BD,OA=OC,OB=OD,OA=OBOC,OAD=ODA,OAB=OBA,AOE=OAD+ODA=2OAD,EAC=2CAD,EAO=AOE,AEBD,AEO=90,AOE=45,OAB=OBA=67.5,即BAE=OABOAE=22.5考点:矩形的性质;等腰三角形的性质三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、;.【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程可得,; 则原方程组转化为()或 (),解方程组()得

12、,解方程组()得 ,原方程组的解是 .点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.20、(1)yx+,y;(2)12;(3) x2或0x4.【解析】(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求ABF的面积;(3)直接根据图象可得【详解】(1)一次函数yx+b的图象与反比例函数y (k0)图象交于A(3,2)、B两点,3(2)+b,k236b,k6一次函数

13、解析式y,反比例函数解析式y.(2)根据题意得: ,解得: ,SABF4(4+2)12(3)由图象可得:x2或0x4【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键21、2x27xy,1【解析】根据完全平方公式及多项式的乘法法则展开,然后合并同类项进行化简,然后把x、y的值代入求值即可.【详解】原式x24xy+4y2+x24xy+xy4y22x27xy,当x5,y时,原式5071【点睛】完全平方公式和多项式的乘法法则是本题的考点,能够正确化简多项式是解题的关键.22、(1)证明见解析;(2)AE=【解析】(1)连结 AC、AC,

14、根据矩形的性质得到ABC90,即 ABCC, 根据旋转的性质即可得到结论;(2)根据矩形的性质得到 ADBC,DABC90,根据旋转的性质得到 BCAD,ADAD,证得 BCAD,根据全等三角形的性质得到 BEDE,设 AEx,则 DE2x,根据勾股定理列方程即可得到结论【详解】解:(1)连结 AC、AC,四边形 ABCD为矩形,ABC90,即 ABCC,将矩形 ABCD 绕点A顺时针旋转,得到矩形 ABCD,ACAC,BCBC;(2)四边形 ABCD 为矩形,ADBC,DABC90,BCBC,BCAD,将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 ABCD,ADAD,BCAD,在ADE

15、与CBE中ADECBE,BEDE,设 AEx,则 DE2x,在 RtADE 中,D90, 由勾定理,得 x2(2x)21,解得 x,AE 【点睛】本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键23、(1)a=2,k=8(2) =1.【解析】分析:(1)把A(-1,a)代入反比例函数得到A(-1,2),过A作AEx轴于E,BFx轴于F,根据相似三角形的性质得到B(4,2),于是得到k=42=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论详

16、解:(1)反比例函数y=(x0)的图象过点A(1,a),a=2,A(1,2),过A作AEx轴于E,BFx轴于F,AE=2,OE=1,ABx轴,BF=2,AOB=90,EAO+AOE=AOE+BOF=90,EAO=BOF,AEOOFB,OF=4,B(4,2),k=42=8;(2)直线OA过A(1,2),直线AO的解析式为y=2x,MNOA,设直线MN的解析式为y=2x+b,2=24+b,b=10,直线MN的解析式为y=2x+10,直线MN交x轴于点M,交y轴于点N,M(5,0),N(0,10),解得,C(1,8),OBC的面积=SOMNSOCNSOBM=51010152=1点睛:本题考查了一次函

17、数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键24、1.【解析】直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案【详解】3tan30=4+113=1【点睛】此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键25、(1)抛物线的解析式为y=x33x1,顶点坐标为(1,4);(3)m=;PA3取得最小值时,m的值是,这个最小值是【解析】(1)根据A(1,3),C(3,1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;(3)根

18、据题意可以得到点P的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P落在直线BC上,从而可以求得m的值;根据题意可以表示出PA3,从而可以求得当PA3取得最小值时,m的值及这个最小值【详解】解:(1)抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(1,3),C(3,1),解得:,该抛物线的解析式为y=x33x1y=x33x1=(x1)34,抛物线的顶点坐标为(1,4);(3)由P(m,t)在抛物线上可得:t=m33m1点P和P关于原点对称,P(m,t),当y=3时,3=x33x1,解得:x1=1,x3=1,由已知可得:点B(1,

19、3)点B(1,3),点C(3,1),设直线BC对应的函数解析式为:y=kx+d,解得:,直线BC的直线解析式为y=x1点P落在直线BC上,t=m1,即t=m+1,m33m1=m+1,解得:m=;由题意可知,点P(m,t)在第一象限,m3,t3,m3,t3二次函数的最小值是4,4t3点P(m,t)在抛物线上,t=m33m1,t+1=m33m,过点P作PHx轴,H为垂足,有H(m,3)又A(1,3),则PH3=t3,AH3=(m+1)3在RtPAH中,PA3=AH3+PH3,PA3=(m+1)3+t3=m33m+1+t3=t3+t+4=(t+)3+,当t=时,PA3有最小值,此时PA3=,=m33

20、m1,解得:m=m3,m=,即PA3取得最小值时,m的值是,这个最小值是【点睛】本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答26、(1)y=2x23x;(2)C(1,1);(3)(,)或(,)【解析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得ABONBO,可求得N点坐标,可求得直线

21、BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOGPOH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标【详解】(1)B(2,t)在直线y=x上,t=2,B(2,2),把A、B两点坐标代入抛物线解析式可得:,解得:,抛物线解析式为;(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t23t),则E(t,0),D(t,t),OE=t,BF

22、=2t,CD=t(2t23t)=2t2+4t,SOBC=SCDO+SCDB=CDOE+CDBF=(2t2+4t)(t+2t)=2t2+4t,OBC的面积为2,2t2+4t=2,解得t1=t2=1,C(1,1);(3)存在设MB交y轴于点N,如图2,B(2,2),AOB=NOB=45,在AOB和NOB中,AOB=NOB,OB=OB,ABO=NBO,AOBNOB(ASA),ON=OA=,N(0,),可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,M(,),C(1,1),COA=AOB=45,且B(2,2),OB

23、=,OC=,POCMOB,POC=BOM,当点P在第一象限时,如图3,过M作MGy轴于点G,过P作PHx轴于点H,如图3COA=BOG=45,MOG=POH,且PHO=MGO,MOGPOH,M(,),MG=,OG=,PH=MG=,OH=OG=,P(,);当点P在第三象限时,如图4,过M作MGy轴于点G,过P作PHy轴于点H,同理可求得PH=MG=,OH=OG=,P(,);综上可知:存在满足条件的点P,其坐标为(,)或(,)【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识在(1)中注意待定

24、系数法的应用,在(2)中用C点坐标表示出BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况27、【解析】试题分析:(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数,求出八年级的作文篇数,补全条形统计图即可;(2)设四篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文,用画树状法即可求得结果.试题解析:(1)2020%=100,九年级参赛作文篇数对应的圆心角=360=126;1002035=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,P(七年级特等奖作文被选登在校刊上)= 考点:1.条形统计图;2.扇形统计图;3.列表法与画树状图法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁