《浙江杭州西湖区重点名校2023年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《浙江杭州西湖区重点名校2023年中考数学模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D82在RtABC中,C=90,如果sinA=,那么s
2、inB的值是()ABCD3如果t0,那么a+t与a的大小关系是( )Aa+ta Ba+ta Ca+ta D不能确定4下列图形中是轴对称图形但不是中心对称图形的是()ABCD5如图,O的直径AB与弦CD的延长线交于点E,若DE=OB,AOC=84,则E等于()A42B28C21D206下列计算中,错误的是( )A;B;C;D7如图,在44的正方形网格中,每个小正方形的边长都为1,AOB的三个顶点都在格点上,现将AOB绕点O逆时针旋转90后得到对应的COD,则点A经过的路径弧AC的长为()ABC2D38如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是
3、()A(6,4)B(4,6)C(5,4)D(4,5)9小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A小明不是胜就是输,所以小明胜的概率为B小明胜的概率是,所以输的概率是C两人出相同手势的概率为D小明胜的概率和小亮胜的概率一样10关于反比例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上11对于任意实数k,关于x的方程的根的情况为A有两个相等的实数根B没有实数根C有两个不相等的实数根D无法确定12如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影
4、部分)与相似的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_14如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则ABC的面积为_15如图所示,在ABC中,C=90,CAB=50.按以下步骤作图:以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;作射线AG交BC边于点D则ADC的度数为.16如
5、图,O在ABC三边上截得的弦长相等,A=70,则BOC=_度17如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 18为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买_个三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)计算:|2|+2cos30()2+(tan45)120(6分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指
6、向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?21(6分)车辆经过润扬大桥收费站时,4个收费通道 AB、C、D中,可随机选择其中的一个通过一辆车经过此收费站时,选择 A通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率22(8分)如图,在ABC中,(1)求作:BAD=C,AD交BC于D(用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)条件下,求证:AB2=BDBC23(8分)一道选择题有四个选项.(1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;(2
7、)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.24(10分)如图,已知矩形 OABC 的顶点A、C分别在 x 轴的正半轴上与y轴的负半轴上,二次函数的图像经过点B和点C(1)求点 A 的坐标;(2)结合函数的图象,求当 y0 时,x 的取值范围25(10分)如图,在ABC中,ABAC,若将ABC绕点C顺时针旋转180得到EFC,连接AF、BE(1)求证:四边形ABEF是平行四边形;(2)当ABC为多少度时,四边形ABEF为矩形?请说明理由26(12分)如图,抛物线yx2+5x+n经过点A(1,0),与y轴交于点B(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是以
8、AB为腰的等腰三角形,试求P点坐标27(12分)某数学兴趣小组为测量如图(所示的一段古城墙的高度,设计用平面镜测量的示意图如图所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处 已知ABBD、CDBD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案 要求:面出示意图(不要求写画法);写出方案,给出简要的计算过程:给出的方案不能用到图的方法参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】作辅助线,构
9、建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,ADCDBC,ADCDCB90,易得AGDDHCCMB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEB
10、CEBM47;故选C【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题2、A【解析】RtABC中,C=90,sinA=,cosA=,A+B=90,sinB=cosA=故选A3、A【解析】试题分析:根据不等式的基本性质即可得到结果.t0,ata,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.4、C【解析】分析:根据轴对称图形与中心对称图形的概念求解详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图
11、形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误故选:C点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【解析】利用OB=DE,OB=OD得到DO=DE,则E=DOE,根据三角形外角性质得1=DOE+E,所以1=2E,同理得到AOC=C+E=3E,然后利用E=AOC进行计算即可【详解】解:连结OD,如图,OB=DE,OB=OD,DO=DE,E=DOE,1=DOE+E,1=2E,而OC=
12、OD,C=1,C=2E,AOC=C+E=3E,E=AOC=84=28故选:B【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)也考查了等腰三角形的性质6、B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可详解:A,故A正确; B,故B错误; C故C正确; D,故D正确; 故选B点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错7、A【解析】根据旋转的性质和弧长公式解答即可【详解】解:将AOB绕点O逆时针旋转90后得到对应的COD,AOC90,OC3,点A经过
13、的路径弧AC的长= ,故选:A【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答8、D【解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解
14、题的关键是掌握切线的性质和坐标计算.9、D【解析】利用概率公式,一一判断即可解决问题.【详解】A、错误小明还有可能是平;B、错误、小明胜的概率是,所以输的概率是也是;C、错误两人出相同手势的概率为;D、正确小明胜的概率和小亮胜的概率一样,概率都是;故选D【点睛】本题考查列表法、树状图等知识用到的知识点为:概率=所求情况数与总情况数之比10、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点
15、(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内11、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:a=1,b=,c=,此方程有两个不相等的实数根故选C12、B【解析】根据相似三角形的判定方法一一判断即可【详解】解:因为中有一个角是135,选项中,有135角的三角形只有B,且满足两边成比例夹角相等,故选:B【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】如图,连接AD,根据圆周角定理可得AD
16、BC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7=3,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键14、1【解析】设P(0,b),直线APBx轴,A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,当y=b,x=-,即A点坐标为(-,b),又点B在反比例函数y=的图象上,当y=b,x=,即B点坐标为(,b),AB=-(-)=,SABC=ABOP=b=115、65【解析】根据已知条件中的作图步骤知,AG是CAB的平分线
17、,根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知,AG是CAB的平分线,CAB=50,CAD=25;在ADC中,C=90,CAD=25,ADC=65(直角三角形中的两个锐角互余);故答案是:6516、125【解析】解:过O作OMAB,ONAC,OPBC,垂足分别为M,N,PA=70,B+C=180A=110O在ABC三边上截得的弦长相等,OM=ON=OP,O是B,C平分线的交点BOC=18012(B+C)=18012110=125. 故答案为:125【点睛】本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.17、4n1【解析】
18、由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,那么第n个就有阴影小三角形1+4(n1)=4n1个18、1【解析】设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:为整数,最大值为1故答案为1【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1【解析】本题涉
19、及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可【详解】解:原式2+23+11【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算20、商人盈利的可能性大【解析】试题分析:根据几何概率的定义,面积比即概率图中A,B,C所占的面积与总面积之比即为A,B,C各自的概率,算出相应的可能性,乘以钱数,比较即可试题解析:商人盈利的可能性大商人收费:80280(元),商人奖励:80380160(元),因为8060
20、,所以商人盈利的可能性大21、(1);(2)【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论试题解析:(1)选择 A通道通过的概率=,故答案为;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,选择不同通道通过的概率=22、(1)作图见解析;(2)证明见解析;【解析】(1)以C为圆心,任意长为半径画弧,交CB、CA于E、F;以A为圆心,CE长为半径画弧,交AB于G;以G为圆心,EF长为半径画弧,两弧交于H;连接AH并延长交BC于D,则BAD=C;(2)证明ABDCBA,然后根据相似三角形的性质得到结论【详
21、解】(1)如图,BAD为所作;(2)BAD=C,B=BABDCBA,AB:BC=BD:AB,AB2=BDBC【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线)也考查了相似三角形的判定与性质23、(1);(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解【详解】解:(1)选中的恰好是正确答案A的概率为;(2)画树状图:共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,所以
22、选中的恰好是正确答案A,B的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、(1);(2)【解析】(1)当时,求出点C的坐标,根据四边形为矩形,得出点B的坐标,进而求出点A即可;(2)先求出抛物线图象与x轴的两个交点,结合图象即可得出【详解】解:(1)当时,函数的值为-2,点的坐标为 四边形为矩形,解方程,得点的坐标为点的坐标为(2)解方程,得由图象可知,当时,的取值范围是【点睛】本题考查了二次函数与几何问题,以及二次函数与不等式问题,解题的关键是灵活运用几何知识,并熟悉二
23、次函数的图象与性质25、(1)证明见解析(2)当ABC=60时,四边形ABEF为矩形【解析】(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可【详解】(1)将ABC绕点C顺时针旋转180得到EFC,ABCEFC,CA=CE,CB=CF,四边形ABEF是平行四边形;(2)当ABC=60时,四边形ABEF为矩形,理由是:ABC=60,AB=AC,ABC是等边三角形,AB=AC=BCCA=CE,CB=CF,AE=BF四边形ABEF是平行四边形,四边形ABEF是矩形【点睛】本题考查了旋转的性质
24、和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键26、(1);(2)(0,)或(0,4)【解析】试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标试题解析:(1)抛物线经过点A(1,0),;(2)抛物线的解析式为,令,则,B点坐标(0,4),AB=,当PB=AB时,PB=AB=,OP=PBOB=P(0,),当
25、PA=AB时,P、B关于x轴对称,P(0,4),因此P点的坐标为(0,)或(0,4)考点:二次函数综合题27、(1)8m;(2)答案不唯一【解析】(1)根据入射角等于反射角可得 APB=CPD ,由 ABBD、CDBD 可得到 ABP=CDP=90,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得APB=CPD,ABP=CDP=90,RtABPRtCDP, ,CD=8. 答:该古城墙的高度为8m(2)解:答案不唯一,如:如图, 在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为.即可测量这段古城墙AB的高度,过点D作DCAB于点C.在RtACD中,ACD=90,tan=,AC= tan,AB=AC+BC=tan+h【点睛】本题考查相似三角形性质的应用解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题