江苏省淮北中学2023届高三第二次联考数学试卷含解析.doc

上传人:茅**** 文档编号:88306939 上传时间:2023-04-25 格式:DOC 页数:19 大小:1.71MB
返回 下载 相关 举报
江苏省淮北中学2023届高三第二次联考数学试卷含解析.doc_第1页
第1页 / 共19页
江苏省淮北中学2023届高三第二次联考数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《江苏省淮北中学2023届高三第二次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省淮北中学2023届高三第二次联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD2执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD3已知函数,若对任意的,存在实数满足,使得,则的最大值是( )A3B2C4D54已知分别为圆与的直径,则的取值范围为( )ABCD5函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD6第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖

3、牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD7某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A56B60C140D1208定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,

4、则的大小关系是( )ABCD以上情况均有可能9设是定义在实数集上的函数,满足条件是偶函数,且当时,则,的大小关系是( )ABCD10已知正项等比数列的前项和为,则的最小值为( )ABCD11我国古代数学著作九章算术有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD12函数的图象在点处的切线为,则在轴上的截距为( )ABCD二、

5、填空题:本题共4小题,每小题5分,共20分。13函数在区间内有且仅有两个零点,则实数的取值范围是_.14实数满足,则的最大值为_15我国著名的数学家秦九韶在数书九章提出了“三斜求积术”他把三角形的三条边分别称为小斜、中斜和大斜三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积所谓“实”、“隅”指的是在方程中,p为“隅”,q为“实”即若的大斜、中斜、小斜分别为a,b,c,则.已知点D是边AB上一点,则的面积为_16一个长、宽、高分别为1、2、2的长

6、方体可以在一个圆柱形容器内任意转动,则容器体积的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数的最大值为,其中.(1)求实数的值;(2)若求证:.18(12分)某地为改善旅游环境进行景点改造如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1(百米),且F恰在B的正对岸(即BFl3)(1)在图中建

7、立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(EPF)最大?请在(1)的坐标系中,写出观测点P的坐标19(12分)在直角坐标系中,曲线的标准方程为.以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)若点在曲线上,点在直线上,求的最小值.20(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.21(12分)已知函数的定义域为,且满足,当

8、时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.22(10分)已知.(1)若曲线在点处的切线也与曲线相切,求实数的值;(2)试讨论函数零点的个数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式

9、,双曲线渐近线方程求法,属于基础题.2、B【解析】根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.3、A【解析】根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【详解】,对任意的,存在实数满足,使得, 易得,即恒成立,对于恒成立,设,则,令,在恒成立,故存在,使得,即

10、,当时,单调递减;当时,单调递增.,将代入得:,且,故选:A【点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.4、A【解析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题5、D【解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移

11、变换,属基础题.6、A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.7、C【解析】试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.考点:频率分布直方图及其应用8、B【解析】由已知可求得函数的周期,根据周期及偶函数的对称性可求在上的单调性,结合三角函数的性质

12、即可比较【详解】由可得,即函数的周期,因为在区间上单调递减,故函数在区间上单调递减,根据偶函数的对称性可知,在上单调递增,因为,是锐角三角形的两个内角,所以且即,所以即,故选:【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键9、C【解析】y=f(x+1)是偶函数,f(-x+1)=f(x+1),即函数f(x)关于x=1对称当x1时,为减函数,f(log32)=f(2-log32)= f()且=log34,log343,bac,故选C10、D【解析】由,可求出等比数列的通项公式,进而可知当时,;当时,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则

13、,由题意得,得,解得,得.当时,;当时,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.11、C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n12, n21故选:C【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题12、A【解析】求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】

14、本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14、【解析】画出可行域,解出可行域的顶点坐标,代入目标函数求出相应的数值,比较大小得到目标函数最值.【详解】解:作出可行域,如

15、图所示,则当直线过点时直线的截距最大,z取最大值由同理,取最大值故答案为: 【点睛】本题考查线性规划的线性目标函数的最优解问题. 线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值;若可行域不是封闭图形还是需要借助截距的几何意义来求最值.15、.【解析】利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求积术”公式即可求得答案.【详解】,所以,由余弦定理可知,得.根据“三斜求积术”可得,所以.【点睛】本题考查正切的和角公式,同角三角函数的

16、基本关系式,余弦定理的应用,考查学生分析问题的能力和计算整理能力,难度较易.16、【解析】一个长、宽、高分别为1、2、2的长方体可以在一个圆柱形容器内任意转动,则圆柱形容器的底面直径及高的最小值均等于长方体的体对角线的长,长方体的体对角线的长为,所以容器体积的最小值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1;(2)证明见解析.【解析】(1)利用零点分段法将表示为分段函数的形式,由此求得的最大值,进而求得的值.(2)利用(1)的结论,将转化为,求得的取值范围,利用换元法,结合函数的单调性,证得,由此证得不等式成立.【详解】(1)当时,取得最大值.(2)证明:

17、由(1)得,当且仅当时等号成立, 令,则在上单调递减当时,.【点睛】本小题主要考查含有绝对值的函数的最值的求法,考查利用基本不等式进行证明,属于中档题.18、(1)见解析,x0,1;(2)P(,)时,视角EPF最大【解析】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标【详解】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得:p1,故方程为,x0,1;(2)设P(,),t0,作PQl3于Q,记EPQ,FPQ,令,则:,当且

18、仅当即,即,即时取等号;故P(,)时视角EPF最大,答:P(,)时,视角EPF最大【点睛】本题主要考查圆锥曲线的实际应用,理解题意,构建合适的模型是求解的关键,涉及最值问题一般利用基本不等式或者导数来进行求解,侧重考查数学运算的核心素养.19、(1)(2)【解析】(1)直接利用极坐标公式计算得到答案(2)设,根据三角函数的有界性得到答案.【详解】(1)因为,所以,因为所以直线的直角坐标方程为.(2)由题意可设,则点到直线的距离.因为,所以,因为,故的最小值为.【点睛】本题考查了极坐标方程,参数方程,意在考查学生的计算能力和转化能力.20、(1);(2)【解析】(1)直接利用转换公式,把参数方程

19、,直角坐标方程与极坐标方程进行转化;(2)利用极坐标方程将转化为三角函数求解即可.【详解】(1)因为,所以的普通方程为,又,的极坐标方程为,的方程即为,对应极坐标方程为.(2)由己知设,则,所以,又,当,即时,取得最小值;当,即时,取得最大值.所以,的取值范围为.【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力.21、(1);(2).【解析】(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数

20、,利用单调性和最值,求出实数的取值范围.【详解】(1)设,所以函数在上单调递增,又因为和,则,所以得解得,即, 故的取值范围为;(2) 由于恒成立,恒成立,设, 则, 令, 则,所以在区间上单调递增, 所以,根据条件,只要 ,所以.【点睛】本题考查利用定义法求函数的单调性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.22、(1)(2)答案不唯一具体见解析【解析】(1)利用导数的几何意义,设切点的坐标,用不同的方式求出两种切线方程,但两条切线本质为同一条,从而得到方程组,再构造函数研究其最大值,进而求得;(2)对函数进

21、行求导后得,对分三种情况进行一级讨论,即,结合函数图象的单调性及零点存在定理,可得函数零点情况.【详解】解: (1)曲线在点处的切线方程为,即.令切线与曲线相切于点,则切线方程为,令,则,记,于是,在上单调递增,在上单调递减,于是,.(2),当时,恒成立,在上单调递增,且,函数在上有且仅有一个零点;当时,在R上没有零点;当时,令,则,即函数的增区间是,同理,减区间是,.)若,则,在上没有零点;)若,则有且仅有一个零点;)若,则.,令,则,当时,单调递增,.又,在R上恰有两个零点,综上所述,当时,函数没有零点;当或时,函数恰有一个零点;当时,恰有两个零点.【点睛】本题考查导数的几何意义、切线方程、零点等知识,求解切线有关问题时,一定要明确切点坐标.以导数为工具,研究函数的图象特征及性质,从而得到函数的零点个数,此时如果用到零点存在定理,必需说明在区间内单调且找到两个端点值的函数值相乘小于0,才算完整的解法.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁