江苏省南京市秦淮中学2023届高三第二次诊断性检测数学试卷含解析.doc

上传人:茅**** 文档编号:88304020 上传时间:2023-04-25 格式:DOC 页数:20 大小:1.95MB
返回 下载 相关 举报
江苏省南京市秦淮中学2023届高三第二次诊断性检测数学试卷含解析.doc_第1页
第1页 / 共20页
江苏省南京市秦淮中学2023届高三第二次诊断性检测数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江苏省南京市秦淮中学2023届高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市秦淮中学2023届高三第二次诊断性检测数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的

2、( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是( )ABCD3已知复数满足,(为虚数单位),则( )ABCD34已知函数f(x),若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是()A B C D 5已知集合,则( )ABCD6已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )ABCD7已知满足,,则在上的投影为()ABCD28椭圆的焦点为,点在椭圆上,若,则的大小为( )ABCD9记的最大值和最小值分别为和若平面向量、,满足,则( )ABCD10若

3、,则的值为( )ABCD11已知定义在上函数的图象关于原点对称,且,若,则( )A0B1C673D67412函数的大致图象是ABCD二、填空题:本题共4小题,每小题5分,共20分。13根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则_.14已知函数对于都有,且周期为2,当时,则_.15设,若函数有大于零的极值点,则实数的取值范围是_16已知实数,满足约束条件,则的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函

4、数,.(1)证明:函数的极小值点为1;(2)若函数在有两个零点,证明:.18(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.19(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.20(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总

5、额增长10个百分点及以上的营销网点为“精英店”.(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;采用促销没有采用促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价 (单位:元)和日销量 (单位:件) 的一组数据后决定选择 作为回归模型进行拟合.具体数据如下表,表中的 :根据上表数据计算的值;已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附:附:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.21(12分)已知函数.(1)当时,

6、解不等式;(2)设不等式的解集为,若,求实数的取值范围.22(10分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑

7、推理能力.2、B【解析】由题意可得的周期为,当时,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,令,又,为周期为的偶函数,当时,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.3、A【解析】,故,故选A.4、D【解析】由已知可将问题转化为:yf(x)的图象和直线ykx有4个交点,作出图象,由图可

8、得:点(1,0)必须在直线ykx的下方,即可求得:k;再求得直线ykx和yln x相切时,k;结合图象即可得解.【详解】若关于x的方程f(x)kx恰有4个不相等的实数根,则yf(x)的图象和直线ykx有4个交点作出函数yf(x)的图象,如图,故点(1,0)在直线ykx的下方k10,解得k.当直线ykx和yln x相切时,设切点横坐标为m,则k,m.此时,k,f(x)的图象和直线ykx有3个交点,不满足条件,故所求k的取值范围是,故选D.【点睛】本题主要考查了函数与方程思想及转化能力,还考查了导数的几何意义及计算能力、观察能力,属于难题5、C【解析】解不等式得出集合A,根据交集的定义写出AB【详

9、解】集合Ax|x22x30x|1x3,故选C【点睛】本题考查了解不等式与交集的运算问题,是基础题6、D【解析】由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.7、A【解析】根据向量投影的定义,即可求解.【详解】在上的投影为.故选:A【点睛】本题考查向量的投影,属于基础题.8、C【解析】根据椭圆的定义可得,再利用余

10、弦定理即可得到结论.【详解】由题意,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.9、A【解析】设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,建立平面直角坐标系,设,由,可得,即,化简得点的轨迹方程为,则,则转化为圆上的点与点的距离,转化为圆上的点与点的距离,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想

11、与数形结合思想的应用,属于中等题.10、C【解析】根据,再根据二项式的通项公式进行求解即可.【详解】因为,所以二项式的展开式的通项公式为:,令,所以,因此有.故选:C【点睛】本题考查了二项式定理的应用,考查了二项式展开式通项公式的应用,考查了数学运算能力11、B【解析】由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题. 其解题思路:函数的奇偶性与周期性相结合的问题多考查求值

12、问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解12、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由等面积法求得,利用向量几何意义求解即可.【详解】由等面积法可得,依题意可得,所以.故答案为:【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.14、【解析】利用,且周期为2,可得,得.【详解】,且

13、周期为2,又当时,故答案为:【点睛】本题考查函数的周期性与对称性的应用,考查转化能力,属于基础题.15、【解析】先求导数,求解导数为零的根,结合根的分布求解.【详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.16、【解析】令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【点睛】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.三、解

14、答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)利用导函数的正负确定函数的增减.(2) 函数在有两个零点,即方程在区间有两解, 令通过二次求导确定函数单调性证明参数范围.【详解】解:(1)证明:因为, 当时,所以在区间递减;当时,所以,所以在区间递增; 且,所以函数的极小值点为1(2)函数在有两个零点,即方程在区间有两解, 令,则令,则,所以在单调递增, 又, 故存在唯一的,使得, 即, 所以在单调递减,在区间单调递增,且, 又因为,所以, 方程关于的方程在有两个零点,由的图象可知,即.【点睛】本题考查利用导数研究函数单调性,确定函数的极值,

15、利用二次求导,零点存在性定理确定参数范围,属于难题.18、(1)证明见解析;(2).【解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值【详解】(1)证明:因为,为中点,所以,又,所以平面,又平面,所以,又,所以平面.(2)由已知及(1)可知,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与

16、线线垂直的相互转化考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论19、(1)见解析(2)见解析【解析】(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为, 当时,由得,由,得,所以在上单调递增,在单调递减;当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;当时,所以在上单调递增;当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,则,因存在,使得成立,即有,使得成立.当变化时,的变化如下:0单调递增单调递减所以.因为,所以,所以.即

17、,所以当时,成立.【点睛】考查求函数单调性的方法和用函数的最值证明不等式的方法,难题.20、(1)列联表见解析,有把握;(2); 元时【解析】(1)直接由题意列出列联表,通过计算,可判断精英店与采用促销活动是否有关.(2)代入表中数据,结合公式求出;由中所得的线性回归方程,若售价为,单价利润为,日销售量为 ,进而可求出日利润,结合导数可求最值.【详解】解:(1)由题意知,采用促销中精英店的数量为 ,采用促销中非精英店的数量为;没有采用促销中精英店的数量为,没有采用促销中非精英店的数量为,列联表为采用促销没有采用促销合计精英店352055非精英店153045合计5050100因为有的把握认为“精

18、英店与采用促销活动有关”.(2)由公式可得:所以回归方程为若售价为,单件利润为,日销售为,故日利润,解得.当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.【点睛】本题考查了独立性检验,考查了线性回归方程的求法,考查了函数最值的求解.在求函数的最值时,常用的方法有:函数图像法、结合函数单调性分析最值、基本不等式法、导数法.其中最常用的还是导数法.21、(1)或;(2)【解析】(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.当时,则

19、,所以;当时,则,所以;当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.22、(1);(2)4【解析】(1)根据已知用二倍角余弦求出,进而求出,利用正弦定理,即可求解;(2)由边角,利用余弦定理结合基本不等式,求出的最大值,即可求出结论.【详解】(1),由正弦定理得.(2)由(1)知,所以,当且仅当时,的面积有最大值4.【点睛】本题考查正弦定理、余弦定理、三角恒等变换解三角形,应用基本不等式求最值,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁