《江西省赣州市崇义中学2023届高考仿真模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省赣州市崇义中学2023届高考仿真模拟数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中,既是偶函数又在区间上单调递增的是( )ABCD2已知数列是公比为的正项等比数列,若、满足,则的最小值为( )ABCD3曲线在点处的切线方程为,则( )ABC4D84九章
2、算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知l丈为10尺,该楔体的三视图如图所示,其中网格纸上小正方形边长为1,则该楔体的体积为( )A10000立方尺 B11000立方尺C12000立方尺 D13000立方尺5已知向量满足,且与的夹角为,则( )ABCD6已知实数,函数在上单调递增,则实数的取值范围是( )ABCD7已知集合,则ABCD8在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最
3、小正角为,则等于( )ABCD9已知函数,若,且 ,则的取值范围为( )ABCD10已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为( )A3B2CD11一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为( )ABCD12已知正项等比数列的前项和为,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若双曲线C:(,)的顶点到渐近线的距离为,则的最小值_.14(5分)如图是一个算法的流程图,若输出的值是,则输入的值为_ 15设的内角的对边分别为,若,则_16在平面直角坐标系xO
4、y中,已知双曲线(a0)的一条渐近线方程为,则a_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败晋级成功晋级失败合计男16女50合计(1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望(参考公式:,其中)0.400.250.150.100.050.0250.7801
5、.3232.0722.7063.8415.02418(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().当时,求函数的极值;若函数存在“F点”,求k的值;(2)已知函数(a,b,)存在两个不相等的“F点”,且,求a的取值范围.19(12分)在考察疫情防控工作中,某区卫生防控中心提出了“要坚持开展爱国卫生运动,从人居环境改善、饮食习惯、社会心理健康、公共卫生设施等多个方面开展,特别是要坚决杜绝食用野生动物的陋习,提倡文明健康、绿色环保的生活方式”的要求.某小组通过问卷调查,随机收集了该区居民六类日常生活习惯的有关数据.六类习惯是:(1)卫生习惯状况类;(2)垃圾处理状况类;(
6、3)体育锻炼状况类;(4)心理健康状况类;(5)膳食合理状况类;(6)作息规律状况类.经过数据整理,得到下表:卫生习惯状况类垃圾处理状况类体育锻炼状况类心理健康状况类膳食合理状况类作息规律状况类有效答卷份数380550330410400430习惯良好频率0.60.90.80.70.650.6假设每份调查问卷只调查上述六类状况之一,各类调查是否达到良好标准相互独立.(1)从小组收集的有效答卷中随机选取1份,求这份试卷的调查结果是膳食合理状况类中习惯良好者的概率;(2)从该区任选一位居民,试估计他在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯的概率;(3)利
7、用上述六类习惯调查的排序,用“”表示任选一位第k类受访者是习惯良好者,“”表示任选一位第k类受访者不是习惯良好者().写出方差,的大小关系.20(12分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,点为射线与曲线的交点,求点的极径.21(12分)已知函数 .(1)若在 处导数相等,证明: ;(2)若对于任意 ,直线 与曲线都有唯一公共点,求实数的取值范围.22(10分)曲线的参数方程为(为参数),以坐标原点为极点,
8、轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.2、B【解析】利用等比数列的通项公式和指数
9、幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题3、B【解析】求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.4、A【解析】由题意,将楔体分割为三
10、棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示:沿上棱两端向底面作垂面,且使垂面与上棱垂直,则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的 四棱锥的体积 由三视图可知两个四棱锥大小相等,立方丈立方尺故选A【点睛】本题考查三视图及几何体体积的计算,其中正确还原几何体,利用方格数据分割与计算是解题的关键5、A【解析】根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.6、D【解析】根据题意,对于函数分2段分析:当,由指数函数的性质分析可得,当,由导数与函数单调性的关系可得,在上恒成立,变形可得,再结合函数的单调性,分析可得,联立
11、三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,当,若为增函数,则,当,若为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有,若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,联立可得:.故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.7、D【解析】因为,所以,故选D8、A【解析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选
12、:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.9、A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.10、C【解析】设射线O
13、A与x轴正向所成的角为,由三角函数的定义得,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.11、B【解析】根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以 , 到 的距离为,同理到 的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.12、D【解析】由,可求出等比
14、数列的通项公式,进而可知当时,;当时,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,得,解得,得.当时,;当时,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式
15、求最值,注意验证等号成立的条件,属于基础题.14、或【解析】依题意,当时,由,即,解得;当时,由,解得或(舍去)综上,得或15、或【解析】试题分析:由,则可运用同角三角函数的平方关系:,已知两边及其对角,求角用正弦定理;,则;可得考点:运用正弦定理解三角形(注意多解的情况判断)16、3【解析】双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明
16、过程或演算步骤。17、 (1) ;(2)列联表见解析,有超过的把握认为“晋级成功”与性别有关;(3)分布列见解析,=3【解析】(1)由频率和为1,列出方程求的值;(2)由频率分布直方图求出晋级成功的频率,计算晋级成功的人数,填写列联表,计算观测值,对照临界值得出结论;(3)由频率分布直方图知晋级失败的频率,将频率视为概率,知随机变量服从二项分布,计算对应的概率值,写出分布列,计算数学期望.【详解】解:(1)由频率分布直方图各小长方形面积总和为1,可知,解得;(2)由频率分布直方图知,晋级成功的频率为,所以晋级成功的人数为(人),填表如下:晋级成功晋级失败合计男163450女94150合计257
17、5100假设“晋级成功”与性别无关,根据上表数据代入公式可得,所以有超过的把握认为“晋级成功”与性别有关;(3)由频率分布直方图知晋级失败的频率为,将频率视为概率,则从本次考试的所有人员中,随机抽取1人进行约谈,这人晋级失败的概率为0.75,所以可视为服从二项分布,即,故,.所以的分布列为:01234数学期望为.或()【点睛】本题考查了频率分布直方图和离散型随机变量的分布列、数学期望的应用问题,属于中档题若离散型随机变量,则.18、(1)极小值为1,无极大值.实数k的值为1.(2)【解析】(1)将代入可得,求导讨论函数单调性,即得极值;设是函数的一个“F点”(),即是的零点,那么由导数可知,且
18、,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)当时, (),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.设是函数的一个“F点”().(),是函数的零点.,由,得,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据知,时,是函数的极小值
19、点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,),可得().又函数存在不相等的两个“F点”和,是关于x的方程()的两个相异实数根.又,即,从而,即.,解得.所以,实数a的取值范围为.(2)(解法2)因为( a,b,)所以().又因为函数存在不相等的两个“F点”和,所以,是关于x的方程组的两个相异实数根.由得,.(2.1)当是函数一个“F点”时,且.所以,即.又,所以,所以.又,所以.(2.2)当不是函数一个“F点”时,则,是关于x的方程的两个相异实数根.又,所以得所以,得.所以,得.综合(2.1)(2.2),实数a的取值范围为.【点睛】本题考查利用导数求函数极值,以及由
20、函数的极值求参数值等,是一道关于函数导数的综合性题目,考查学生的分析和数学运算能力,有一定难度.19、(1)(2)(3)【解析】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,根据古典概型求出即可;(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“,则(E),求出即可;(3)根据题意,写出即可【详解】(1)设“选取的试卷的调查结果是膳食合理状况类中习惯良好者“的事件为,有效问卷共有(份,其中受访者中膳食合理习惯良好的人数是人,
21、故(A);(2)设该区“卫生习惯状况良好者“,“体育锻炼状况良好者“、“膳食合理状况良好者”事件分别为,根据题意,可知(A),(B),(C),设事件为“该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯方面,至少具备两类良好习惯“则.所以该居民在“卫生习惯状况类、体育锻炼状况类、膳食合理状况类”三类习惯至少具备2个良好习惯的概率为0.766.(3)【点睛】本题考查了古典概型求概率,独立性事件,互斥性事件求概率等,考查运算能力和事件应用能力,中档题20、(1);(2)【解析】(1)将两直线化为普通方程,消去参数,即可求出曲线的普通方程;(2)设Q点的直角坐标系坐标为,求出,代入曲
22、线C可求解.【详解】(1)直线的普通方程为,直线的普通方程为联立直线,方程消去参数k,得曲线C的普通方程为整理得.(2)设Q点的直角坐标系坐标为,由可得代入曲线C的方程可得,解得(舍),所以点的极径为.【点睛】本题主要考查了直线的参数方程化为普通方程,普通方程化为极坐标方程,极径的求法,属于中档题.21、(I)见解析(II)【解析】(1)由题x0,由f(x)在x=x1,x2(x1x2)处导数相等,得到,得,由韦达定理得,由基本不等式得,得,由题意得,令,则,令,利用导数性质能证明(2)由得,令,利用反证法可证明证明恒成立由对任意,只有一个解,得为上的递增函数,得,令,由此可求的取值范围.【详解
23、】(I)令,得,由韦达定理得即,得令,则,令,则,得(II)由得令,则,下面先证明恒成立若存在,使得,且当自变量充分大时,所以存在,使得,取,则与至少有两个交点,矛盾由对任意,只有一个解,得为上的递增函数,得,令,则,得【点睛】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力属难题22、(1),;(2).【解析】(1)先将曲线化为普通方程,再由直角坐标系与极坐标系之间的转化关系:,可得极坐标方程和曲线的直角坐标方程;(2)由已知可得出射线的极坐标方程为,联立和的极坐标方程可得点A和点B的极坐标,从而得出,由的范围可求得的取值范围.【详解】(1)曲线的普通方程为,即,其极坐标方程为;曲线的极坐标方程为,即,其直角坐标方程为;(2)射线的极坐标方程为,联立,联立, 的取值范围是【点睛】本题考查圆的参数方程与普通方程互化,圆,抛物线的极坐标方程与普通方程的互化,以及在极坐标下的直线与圆和抛物线的位置关系,属于中档题.