江西省临川区第一中学2022-2023学年高考数学押题试卷含解析.doc

上传人:lil****205 文档编号:88306362 上传时间:2023-04-25 格式:DOC 页数:20 大小:2.33MB
返回 下载 相关 举报
江西省临川区第一中学2022-2023学年高考数学押题试卷含解析.doc_第1页
第1页 / 共20页
江西省临川区第一中学2022-2023学年高考数学押题试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江西省临川区第一中学2022-2023学年高考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省临川区第一中学2022-2023学年高考数学押题试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的图象在点处的切线方程是,则( )A2B3C-2D-32如图所示的程序框图输出的是126,则应为( )ABCD3某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等

2、距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米4复数在复平面内对应的点为则( )ABCD5是正四面体的面内一动点,为棱中点,记与平面成角为定值,若点的轨迹为一段抛物线,则( )ABCD6正项等比数列中的、是函数的极值点,则( )AB1CD27已知与分别为函数与函数的图象上一点,则线段的最小值为( )ABCD68明代数学家程大位(15331606年),有感于当时筹算方法的不便,用其毕生心血写出算法统宗,可谓集成计算的鼻祖如图所示的程序框图的算法思路源于其著作中

3、的“李白沽酒”问题执行该程序框图,若输出的的值为,则输入的的值为( )ABCD9已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )ABCD10已知函数,若对,且,使得,则实数的取值范围是( )ABCD11已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD12函数的图象大致是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,分别为内角,的对边,则的面积为_.14已知集合,若,且,则实数所有的可能取值构成的集合是_.15若满足约束条件,则的最大值为_16已知等边三角形的边长为1,点、分别为线段、上的动点,则取值的集合为_三、解答题:共70分。

4、解答应写出文字说明、证明过程或演算步骤。17(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.18(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1(1)求椭圆的方程;(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由19(12分)一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种(1

5、)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望20(12分)已知函数,(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值21(12分)已知椭圆:的左、右焦点分别为,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.22(10分)设函数.(1)当时,求不等式的解集;(2)若恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,

6、只有一项是符合题目要求的。1、B【解析】根据求出再根据也在直线上,求出b的值,即得解.【详解】因为,所以所以,又也在直线上,所以,解得所以.故选:B【点睛】本题主要考查导数的几何意义,意在考查学生对这些知识的理解掌握水平.2、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+2n的值,并输出满足循环的条件S=2+22+21=121,故中应填n1故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一

7、个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误3、B【解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.4、B【解析】求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算

8、,属于基础题.5、B【解析】设正四面体的棱长为,建立空间直角坐标系,求出各点的坐标,求出面的法向量,设的坐标,求出向量,求出线面所成角的正弦值,再由角的范围,结合为定值,得出为定值,且的轨迹为一段抛物线,所以求出坐标的关系,进而求出正切值【详解】由题意设四面体的棱长为,设为的中点,以为坐标原点,以为轴,以为轴,过垂直于面的直线为轴,建立如图所示的空间直角坐标系,则可得,取的三等分点、如图,则,所以、,由题意设,和都是等边三角形,为的中点,平面,为平面的一个法向量,因为与平面所成角为定值,则,由题意可得,因为的轨迹为一段抛物线且为定值,则也为定值,可得,此时,则,.故选:B.【点睛】考查线面所成

9、的角的求法,及正切值为定值时的情况,属于中等题6、B【解析】根据可导函数在极值点处的导数值为,得出,再由等比数列的性质可得.【详解】解:依题意、是函数的极值点,也就是的两个根又是正项等比数列,所以.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.7、C【解析】利用导数法和两直线平行性质,将线段的最小值转化成切点到直线距离.【详解】已知与分别为函数与函数的图象上一点,可知抛物线存在某条切线与直线平行,则,设抛物线的切点为,则由可得,所以切点为,则切点到直线的距离为线段的最小值,则.故选:C.【点睛】本题考查导数的几何意义的应用,以及点到直线的距离公式的应用,考查转化思想和计算

10、能力.8、C【解析】根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.9、C【解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C考点:1向量加减法的几何意义;2正弦定理;3正弦函数性质10、D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.

11、又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.11、D【解析】求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【详解】解:命题,即: ,是的必要不充分条件,解得实数的取值范围为故选:【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解(2)求解参数的取值范围时,

12、一定要注意区间端点值的检验12、A【解析】根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,由余弦定理得,解得,的面积.故答案为:.【点睛】本题考查

13、余弦定理的应用和三角形的面积公式,考查计算能力.14、.【解析】化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.15、4【解析】作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.16、【解析】根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,的表达式,再进行数量积的运算,最后求和即可得出结果.【详解】解: 以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,则,设,

14、 ,即点的坐标为,则,所以故答案为: 【点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(2)以点为坐标原点,、所在直线分别为、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.【详解】(1)取中点,连接、,且,四边形为平行四边形,且,、分别为、中点,且,则四边形为平行四边形,且,且,且,所以,四边形为平行四边形,且,四边形为平

15、行四边形,平面,平面,平面;(2)以点为坐标原点,、所在直线分别为、轴建立如下图所示的空间直角坐标系,则、,设平面的法向量为,由,得,取,则,设平面的法向量为,由,得,取,则,因此,二面角的正弦值为.【点睛】本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.18、(1) (1)不存在,理由见解析【解析】(1)利用离心率和过点,列出等式,即得解(1)设的方程为,与椭圆联立,利用韦达定理表示中点N的坐标,用点坐标表示,利用韦达关系代入,得到关于k的等式,即可得解.【详解】(1)由题意,可得解得则,故椭圆的方程为(1)当直线的斜率不存在时,不符合题意当

16、的斜率存在时,设的方程为,联立得,设,则,即设,则,则,即,整理得,此方程无解,故的方程不存在综上所述,不存在直线使得【点睛】本题考查了直线和椭圆综合,考查了弦长和中点问题,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.19、(1)当或时,有3个坑要补播种的概率最大,最大概率为; (2)见解析.【解析】(1)将有3个坑需要补种表示成n的函数,考查函数随n的变化情况,即可得到n为何值时有3个坑要补播种的概率最大(2)n1时,X的所有可能的取值为0,1,2,3,1分别计算出每个变量对应的概率,列出分布列,求期望即可【详解】(1)对一个坑而言,要补播种的概率,有3个坑要补播种的概率为.欲

17、使最大,只需,解得,因为,所以当时,;当时,;所以当或时,有3个坑要补播种的概率最大,最大概率为.(2)由已知,的可能取值为0,1,2,3,1.,所以的分布列为01231的数学期望.【点睛】本题考查了古典概型的概率求法,离散型随机变量的概率分布,二项分布,主要考查简单的计算,属于中档题20、(1)见解析 (2)的最小值为【解析】(1)由题可得函数的定义域为,当时,令,可得;令,可得,所以函数在上单调递增,在上单调递减; 当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增 综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上

18、单调递减;当时,函数在上单调递增 (2)方法一:当时,设,则,所以函数在上单调递减,所以,当且仅当时取等号当时,设,则,所以,设,则,所以函数在上单调递减,且,所以存在,使得,所以当时,;当时, 所以函数在上单调递增,在上单调递减,因为,所以,所以,当且仅当时取等号所以当时,函数取得最小值,且,故函数的最小值为 方法二:当时,则,令,则,所以函数在上单调递增, 又,所以存在,使得,所以函数在上单调递减,在上单调递增, 因为,所以当时,恒成立,所以当时,恒成立,所以函数在上单调递减,所以函数的最小值为21、(1)(2)存在;实数的取值范围是【解析】(1)根据椭圆定义计算,再根据,的关系计算即可得

19、出椭圆方程;(2)设直线方程为,与椭圆方程联立方程组,求出的范围,根据根与系数的关系求出的中点坐标,求出的中垂线与轴的交点横,得出关于的函数,利用基本不等式得出的范围【详解】(1)由题意可知,又,椭圆的方程为:(2)若存在点,使得以,为邻边的平行四边形是菱形,则为线段的中垂线与轴的交点设直线的方程为:,联立方程组,消元得:,又,故由根与系数的关系可得,设的中点为,则,线段的中垂线方程为:,令可得,即,故,当且仅当即时取等号,且的取值范围是,【点睛】本题主要考查了椭圆的性质,考查直线与椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力22、 (1);(2) .【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围详解:(1)当时,可得的解集为(2)等价于而,且当时等号成立故等价于由可得或,所以的取值范围是点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁