《河南省安阳市龙安区重点中学2022-2023学年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《河南省安阳市龙安区重点中学2022-2023学年中考数学模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1方程的解是( ).ABCD2如图O的直径垂直于弦,垂足是,的长为( )AB4CD83如图,由四个正方体组成的几何体的左视图是( )ABCD4如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D5计算x2y(2x+y)的结果为()A3xyB3x3yCx3yDxy6如图,图1是由5个完
2、全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A左、右两个几何体的主视图相同B左、右两个几何体的左视图相同C左、右两个几何体的俯视图不相同D左、右两个几何体的三视图不相同7如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是( )A68B20C28D228如图,在中,,点分别在上,于,则的面积为( )ABCD9计算2a23a2的结果是( )A5a4B6a2C6a4D5a210两个一次函数,它们在同一直角坐标系中的图象大致是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11
3、如图,ab,1=40,2=80,则3=度12某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用_;依据是_(答案不唯一,理由支撑选项即可)13如图,已知是的高线,且,则_.14如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_15阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ACB是A
4、BC的一个内角求作:APBACB小明的做法如下:如图作线段AB的垂直平分线m;作线段BC的垂直平分线n,与直线m交于点O;以点O为圆心,OA为半径作ABC的外接圆;在弧ACB上取一点P,连结AP,BP所以APBACB老师说:“小明的作法正确”请回答:(1)点O为ABC外接圆圆心(即OAOBOC)的依据是_;(2)APBACB的依据是_16因式分解 三、解答题(共8题,共72分)17(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C求双曲线的解析式;点P在x轴上,如果ACP的面积为3,求点P的坐标18(8分)(1)如图1,在矩形ABCD中,点O在边AB上,AOC=BOD
5、,求证:AO=OB;(2)如图2,AB是O的直径,PA与O相切于点A,OP与O相交于点C,连接CB,OPA=40,求ABC的度数19(8分)(1)计算:;(2)先化简,再求值:,其中a=20(8分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值21(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽
6、取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?22(10分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?23(12分)如图,AD是ABC的中线,过点C作直线CFAD(问
7、题)如图,过点D作直线DGAB交直线CF于点E,连结AE,求证:ABDE(探究)如图,在线段AD上任取一点P,过点P作直线PGAB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明(应用)在探究的条件下,设PE交AC于点M若点P是AD的中点,且APM的面积为1,直接写出四边形ABPE的面积24计算:4cos45+()1+|2|参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B
8、.【点睛】本题考查了解分式方程,解分式方程不要忘记验根.2、C【解析】直径AB垂直于弦CD,CE=DE=CD,A=22.5,BOC=45,OE=CE,设OE=CE=x,OC=4,x2+x2=16,解得:x=2,即:CE=2,CD=4,故选C3、B【解析】从左边看可以看到两个小正方形摞在一起,故选B.4、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.5、C【解析】原式去括号合并同类项
9、即可得到结果【详解】原式,故选:C【点睛】本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.6、B【解析】直接利用已知几何体分别得出三视图进而分析得出答案【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键7、D【解析】试题解析:四边形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,旋转角为,BAB=,BAD=BAD=90
10、,D=D=90,2=1=112,而ABD=D=90,3=180-2=68,BAB=90-68=22,即=22故选D8、C【解析】先利用三角函数求出BE=4m,同(1)的方法判断出1=3,进而得出ACQCEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】,CQ=4m,BP=5m,在RtABC中,sinB=,tanB=,如图2,过点P作PEBC于E,在RtBPE中,PE=BPsinB=5m=3m,tanB=,BE=4m,CE=BC-BE=8-4m,同(1)的方法得,1=3,ACQ=CEP,ACQCEP, , ,m=,PE=3m=,SACP=SACB-SPCB=BCAC-BCPE=BC(
11、AC-PE)=8(6- )=,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出ACQCEP是解题的关键9、D【解析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a23a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.10、B【解析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出
12、两直线经过的象限以及与y轴的交点位置,即可得解【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合故选:B【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k0),k0时,一次函数图象经过第一三象限,k0时,一次函数图象经过第二四象限,b0时与y轴正半轴相交,b0时与y轴负半轴相交二、填空题(本大题共6个小题,每小题3分,共18分)11、120【解析】如图,ab,2=80,4
13、=2=80(两直线平行,同位角相等)3=1+4=40+80=120故答案为12012、A A的平均成绩高于B平均成绩 【解析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,A比B更优秀,如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.13、4cm【解析】根据三角形的高线的定义得到,根据直角三角形的性质即可得到结论.【详解】解:是的高线,.故答案为:4cm.【点睛】本题考查了三角形的角平分线、中线、高线,含30角的直角三角形,熟练掌握直角三角
14、形的性质是解题的关键14、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解
15、得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合15、线段垂直平分线上的点与这条线段两个端点的距离相等;等量代换 同弧所对的圆周角相等 【解析】(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论(2)根据同弧所对的圆周角相等即可得出结论【详解】(1)如图2中,MN垂直平分AB,EF垂直平分BC,OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),OA=OB=OC(等量代换)故答案是: (2),APB=ACB(同弧所对的圆周角相等)故答案
16、是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质16、【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式因此,先提取公因式后继续应用平方差公式分解即可:三、解答题(共8题,共72分)17、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代
17、入双曲线解析式可求得k的值,可求得双曲线解析式; (2)设P(t,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于t的方程,则可求得P点坐标详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,A(2,3)A点也在双曲线上,k=23=6,双曲线解析式为y=; (2)在y=x+2中,令y=0可求得:x=4,C(4,0)点P在x轴上,可设P点坐标为(t,0),CP=|t+4|,且A(2,3),SACP=3|t+4|ACP的面积为3,3|t+4|=3,解得:t=6或t=2,P点坐标为(6,0)或(2,0)点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函
18、数解析式是解题的关键18、(1)证明见解析;(2)25.【解析】试题分析: (1)根据等量代换可求得AOD=BOC,根据矩形的对边相等,每个角都是直角,可知A=B=90,AD=BC,根据三角形全等的判定AAS证得AODBOC,从而得证结论(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角POA的度数,然后利用圆周角定理来求ABC的度数试题解析:(1)AOC=BOD AOC -COD=BOD-COD即AOD=BOC 四边形ABCD是矩形A=B=90,AD=BC AO=OB (2)解:AB是的直径,PA与相切于点A,PAAB,A=90. 又OPA=40,AOP=50,OB=OC,B=O
19、CB. 又AOP=B+OCB,. 19、(1)2016;(2)a(a2),【解析】试题分析:(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可试题解析:(1)原式=2016;(2)原式=a(a2),当a=时,原式=20、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直
20、角三角形,所以BAH=45,得到DAC=BACBAH=30,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A
21、(2,1)代入y=,得k=21=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45,BAC=75,DAC=BACBAH=30,tanDAC=tan30=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1
22、,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为21、(1)补图见解析;(2)27;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:1025%=40(人),在B类的人数是:4030%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360=27;(3)能在1.5小时内完成家庭作业的人数是:2000(25%+30%+35%)=1800(人).考点:条形统计图、扇
23、形统计图22、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设关于的函数解析式是,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百花公园的时间为:(分钟),当时, ,得,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理
24、由详见解析;【应用】:8.【解析】(1)先根据平行线的性质和等量代换得出13,再利用中线性质得到BDDC,证明ABDEDC,从而证明ABDE(2)方法一:过点D作DNPE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明ABPEPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图 是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形方法一:如图,证明:过点D作交直线于点,四边形是平行四边形,由问题结论可得四边形是平行四边形方法二:如图,证明:延长BP交直线CF于点N,是的中线,四边形是平行四边形【应用】如图,延长BP交CF于H由上面可知,四边形是平行四边形,四边形APHE是平行四边形,【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.24、4【解析】分析:代入45角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.