江苏省常州市金坛区白塔中学2022-2023学年中考一模数学试题含解析.doc

上传人:茅**** 文档编号:88305827 上传时间:2023-04-25 格式:DOC 页数:18 大小:1.14MB
返回 下载 相关 举报
江苏省常州市金坛区白塔中学2022-2023学年中考一模数学试题含解析.doc_第1页
第1页 / 共18页
江苏省常州市金坛区白塔中学2022-2023学年中考一模数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省常州市金坛区白塔中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省常州市金坛区白塔中学2022-2023学年中考一模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1若点M(3,y1),N(4,y2)都在正比例函数y=k2x(k0)的图象上,则y1与y2的大小关系是()Ay1y2 By1y2 Cy1=y2 D不能确定2某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元ABCD3在RtABC中,C=

2、90,AC=5,AB=13,则sinA的值为()ABCD4下列计算正确的是()A +BC6D45已知抛物线yx2+bx+c的部分图象如图所示,若y0,则x的取值范围是()A1x4B1x3Cx1或x4Dx1或x36如图,以AD为直径的半圆O经过RtABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()ABCD7小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达若设走路线一时的平均速度为x千米/小时,根据题意,得AB

3、CD8去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A1.23106B1.23107C0.123107D12.31059若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD10在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )Ak1Bk0Ck1Dk1二、填空题(本大题共6个小题,每小题3分,共18分)11若不等式组有解,则m的取值范围是_12计算:的结果是_13已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,

4、则可以画出的不同的等腰三角形的个数为_.14若分式的值为正数,则x的取值范围_15不等式组的解集是_16如图,ABCADE,BAC=DAE=90,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_三、解答题(共8题,共72分)17(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查根据调查数据绘制了如下所示不完整统计图条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该

5、年级被抽到的志愿者数与样本容量的比请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?18(8分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?19(8分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180,得到新的抛物线C(1)求抛物

6、线C的函数表达式;(2)若抛物线C与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C上的对应点P,设M是C上的动点,N是C上的动点,试探究四边形PMPN能否成为正方形?若能,求出m的值;若不能,请说明理由20(8分)如图,是的直径,是圆上一点,弦于点,且过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点(1)求证:与相切;(2)连接,求的值21(8分)如图,已知AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)22(10分)如图,是的外接圆,是

7、的直径,过圆心的直线于,交于,是的切线,为切点,连接,(1)求证:直线为的切线;(2)求证:;(3)若,求的长23(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图

8、.请根据图中的信息,解答下列问题:(1)调查了_名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据正比例函数的增减性解答即可.【详解】正比例函数y=k2x(k0),k20,该函数的图象中y随x的增大而减小,点M(3,y1),N(4,y2)在正比例函数y=k2x(k0)图象上,43,y2y1,故选:A【点睛】本

9、题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k0),当k0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k0时, y=kx的图象经过二、四象限,y随x的增大而减小.2、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元,由题意得0.8200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键3、C【解析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可【详

10、解】如图,根据勾股定理得,BC=12,sinA=故选C【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键4、B【解析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把 化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断【详解】解:A、与不能合并,所以A选项不正确;B、-=2=,所以B选项正确;C、=,所以C选项不正确;D、=2=2,所以D选项不正确故选B【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算5、B【解析】试题分析:观察图象可知,抛物线y=x2bxc与x轴

11、的交点的横坐标分别为(1,0)、(1,0),所以当y0时,x的取值范围正好在两交点之间,即1x1故选B考点:二次函数的图象1061446、D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为SABCS扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,B,E是半圆弧的三等分点,EOAEOBBOD60,BADEBA30,BEAD, 的长为 ,解得:R4,ABADcos30 ,BCAB,ACBC6,SABCBCAC6,BOE和ABE同底

12、等高,BOE和ABE面积相等,图中阴影部分的面积为:SABCS扇形BOE故选:D【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.7、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程解:设走路线一时的平均速度为x千米/小时,故选A8、A【解析】分析:科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值1时,是正数;当原数的绝

13、对值1【解析】试题解析:由题意得:0,-60,1-x0,x115、x1【解析】分析:分别求出两个不等式的解,从而得出不等式组的解集详解:解不等式可得:x1, 解不等式可得:x3, 不等式组的解为x1点睛:本题主要考查的是不等式组的解集,属于基础题型理解不等式的性质是解决这个问题的关键16、1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1三、解答题(共8题,共72分)17、(1)作图见解析;(2)1【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问

14、题;试题解析:解:(1)由题意总人数=2040%=50人,八年级被抽到的志愿者:5030%=15人九年级被抽到的志愿者:5020%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有60020%=1人答:该校九年级大约有1名志愿者18、1人【解析】解:设九年级学生有x人,根据题意,列方程得:,整理得0.8(x+88)=x,解之得x=1经检验x=1是原方程的解答:这个学校九年级学生有1人 设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文

15、具包的花费是:,根据题意可得方程,解方程即可19、(1);(2)2m;(1)m=6或m=1【解析】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMPN能成为正方形作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角三角形时,四边形PMPN是正方形,推出PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF

16、=HM=2m,可得M(m+2,m2),理由待定系数法即可解决问题;情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),利用待定系数法即可解决问题【详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,抛物线C的函数表达式为(2)由题意抛物线C的顶点坐标为(2m,4),设抛物线C的解析式为,由,消去y得到 ,由题意,抛物线C与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2m,满足条件的m的取值范围为2m(1)结论:四边形PMPN能成为正方形理由:1情形1,如图,作PEx轴于E,MHx轴于H由题意易知P(2,2),当PFM是等腰直角

17、三角形时,四边形PMPN是正方形,PF=FM,PFM=90,易证PFEFMH,可得PE=FH=2,EF=HM=2m,M(m+2,m2),点M在上,解得m=1或1(舍弃),m=1时,四边形PMPN是正方形情形2,如图,四边形PMPN是正方形,同法可得M(m2,2m),把M(m2,2m)代入中,解得m=6或0(舍弃),m=6时,四边形PMPN是正方形综上所述:m=6或m=1时,四边形PMPN是正方形20、(1)见解析;(2)【解析】(1)连接,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得1=30,由于可得DCG=CDA=60,即可求出OCG=90,可得与相切;(2)作于点设,则,根

18、据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值【详解】(1)连接,是的直径,弦于点,为等边三角形,DAE=EAC=30,OA=OC,OAC=OCA=30,1=DCA-OCA=30,DCG=CDA=60,OCG=DCG+1=60+30=90,与相切(2)连接EF,作于点设,则,与相切,又,又,四边形为平行四边形,四边形为菱形,由(1)得,在中,【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.

19、21、见解析【解析】作AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:作AOB的平分线OE,作线段MN的垂直平分线GH,GH交OE于点P点P即为所求【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.22、(1)证明见解析;(2)证明见解析;(3)1【解析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂

20、直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证【详解】(1)连接OB,PB是O的切线,PBO=90OA=OB,BAPO于D,AD=BD,POA=POB又PO=PO,PAOPBO PAO=PBO=90,直线PA为O的切线(2)由(1)可知,=90,即,是直径,是半径,整理得;(3)是中点,是中点,是的中位线,是直角三角形,在中,则,、是半径,在中,由勾股定理得:,即,解得:或(舍去),【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数

21、关系等知识,熟练掌握切线的判定与性质是解本题的关键23、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案【解析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,x=15,经检验x=15是原方程的解40x=1甲,乙

22、两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,解得20y2因为y是整数,甲种玩具的件数少于乙种玩具的件数,y取20,21,22,23,共有4种方案考点:分式方程的应用;一元一次不等式组的应用24、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁