《江苏省扬州市大丰区重点中学2022-2023学年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市大丰区重点中学2022-2023学年中考一模数学试题含解析.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1把不等式组的解集表示在数轴上,正确的是()ABCD2如果,则a的取值范围是( )Aa0Ba0Ca0Da03一元二次方程x
2、2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=54若一个正多边形的每个内角为150,则这个正多边形的边数是()A12B11C10D95如图,在菱形纸片ABCD中,AB=4,A=60,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上则sinAFG的值为( )ABCD6如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D7超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A0.8x10=90B0.08x
3、10=90C900.8x=10Dx0.8x10=908如果代数式有意义,则实数x的取值范围是( )Ax3Bx0Cx3且x0Dx39如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D1610魏晋时期的数学家刘徽首创割圆术为计算圆周率建立了严密的理论和完善的算法作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用来求得较为精确的圆周率祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值
4、是()A0.5B1C3D11如图,在ABCD中,DAB的平分线交CD于点E,交BC的延长线于点G,ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()ABO=OH BDF=CE CDH=CG DAB=AE12在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份二、填空题:(本大题共6个小题,每小题4分,共24分)13因式分解:_14已知函数是关于的二次函数,则_15若代数式的值不小于代数式的值,则x的取值范围是_16一个样本为1,3,2,2,a,b,c,已知这个样本的众数为
5、3,平均数为2,则这组数据的中位数为_17如图,在PAB中,PAPB,M、N、K分别是PA,PB,AB上的点,且AMBK,BNAK若MKN40,则P的度数为_18如图,已知在RtABC中,ACB90,AB4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1S2等_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)一次函数yx的图象如图所示,它与二次函数yax24axc的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C(1)求点C的坐标;(2)设二次函数图象的顶点为D若点D与点C关于x轴对称,且ACD的面积等于3
6、,求此二次函数的关系式;若CDAC,且ACD的面积等于10,求此二次函数的关系式20(6分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元(1)求A、B型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至
7、少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50a70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案21(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整(1)按如下分数段整理、描述这两组数据:成绩x学生70x7475x7980x8485x8990x9495x100甲_乙114211(2)两组数据的极差、平均数、中
8、位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲_83.7_8613.21乙2483.782_46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选_(填“甲”或“乙),理由为_22(8分)如图,抛物线yax2+bx+c(a0)的顶点为M,直线ym与抛物线交于点A,B,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶由定义知,取AB中点N,连结MN,MN与AB的关系是_抛物线y对应的准蝶形必经过B(m,m),则m_,对应的碟宽AB是_抛物线yax24a(a0)对应的碟宽在x 轴上,且A
9、B1求抛物线的解析式;在此抛物线的对称轴上是否有这样的点P(xp,yp),使得APB为锐角,若有,请求出yp的取值范围若没有,请说明理由23(8分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D(1)求a,b的值及反比例函数的解析式;(2)若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由24(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果
10、如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示 分组频数4.0x4.224.2x4.434.4x4.654.6x4.884.8x5.0175.0x5.25(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果25(10分)珠海某企业接到加工“无人船”某零件5000个的任务在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成求技术改进后每天加工零件的数量26(12分)(操作发现)(1)如图1,
11、ABC为等边三角形,先将三角板中的60角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于30),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使DCE=30,连接AF,EF求EAF的度数;DE与EF相等吗?请说明理由;(类比探究)(2)如图2,ABC为等腰直角三角形,ACB=90,先将三角板的90角与ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0且小于45),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使DCE=45,连接AF,EF请直接写出探究结果:EAF的度
12、数;线段AE,ED,DB之间的数量关系27(12分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG()如图,求OD的长及的值;()如图,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BEFG,记旋转角为(0360),连接AG在旋转过程中,当BAG=90时,求的大小;在旋转过程中,求AF的长取最大值时,点F的坐标及此时的大小(直接写出结果即可)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只
13、有一项是符合题目要求的)1、A【解析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可【详解】 由,得x2,由,得x1,所以不等式组的解集是:2x1不等式组的解集在数轴上表示为:故选A【点睛】本题考查的是解一元一次不等式组熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键2、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点睛】绝对值规律总结:一个正数的绝对值是它本身,一
14、个负数的绝对值是它的相反数,1的绝对值是13、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.4、A【解析】根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180150=30,再根据多边形外角和为360度即可求出边数【详解】一个正多边形的每个内角为150,这个正多边形的每个外角=180150=30,这个正多边形的边数=1故选:A【点睛】本题考查了正多边形的外角与它对应的内角互补的性质;也考查了
15、多边形外角和为360度以及正多边形的性质5、B【解析】如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE由题意可得:DE=1,HDE=60,BCD是等边三角形,即可求DH的长,HE的长,AE的长,NE的长,EF的长,则可求sinAFG的值【详解】解:如图:过点E作HEAD于点H,连接AE交GF于点N,连接BD,BE四边形ABCD是菱形,AB=4,DAB=60,AB=BC=CD=AD=4,DAB=DCB=60,DCABHDE=DAB=60,点E是CD中点DE=CD=1在RtDEH中,DE=1,HDE=60DH=1,HE= AH=AD+DH=5在RtAHE中,AE=1 AN=NE=
16、,AEGF,AF=EFCD=BC,DCB=60BCD是等边三角形,且E是CD中点BECD,BC=4,EC=1BE=1CDABABE=BEC=90在RtBEF中,EF1=BE1+BF1=11+(AB-EF)1EF=由折叠性质可得AFG=EFG,sinEFG= sinAFG = ,故选B.【点睛】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键6、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看
17、不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.7、A【解析】试题分析:设某种书包原价每个x元,根据题意列出方程解答即可 设某种书包原价每个x元,可得:0.8x10=90考点:由实际问题抽象出一元一次方程8、C【解析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可【详解】由题意得,x+30,x0,解得x3且x0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.9、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边B
18、C向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键10、C【解析】连接OC、OD,根据正六边形的性质得到COD60,得到COD是等边三角形,得到OCCD,根据题意计算即可【详解】连接OC、OD,六边形ABCDEF是正六边形,COD60,又OCOD,COD是等边三角形,OCCD,正六边形的周长:圆的直
19、径6CD:2CD3,故选:C【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式是解题的关键11、D【解析】解:四边形ABCD是平行四边形,AHBG,AD=BC,H=HBGHBG=HBA,H=HBA,AH=AB同理可证BG=AB,AH=BGAD=BC,DH=CG,故C正确AH=AB,OAH=OAB,OH=OB,故A正确DFAB,DFH=ABHH=ABH,H=DFH,DF=DH同理可证EC=CGDH=CG,DF=CE,故B正确无法证明AE=AB,故选D12、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5
20、元,所以,4月利润最大,故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、a(a+1)(a-1)【解析】先提公因式,再利用公式法进行因式分解即可.【详解】解:a(a+1)(a-1)故答案为:a(a+1)(a-1)【点睛】本题考查了因式分解,先提公因式再利用平方差公式是解题的关键.14、1【解析】根据一元二次方程的定义可得:,且,求解即可得出m的值【详解】解:由题意得:,且,解得:,且,故答案为:1【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”15、x【解析】根据题意列出不等式,依据解不等式得基本步骤求解可得【详解】解:根据
21、题意,得:,6(3x1)5(15x),18x6525x,18x+25x5+6,43x11,x,故答案为x【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键16、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数
22、的概念掌握得不好,不把数据按要求重新排列,就会出错17、100【解析】由条件可证明AMKBKN,再结合外角的性质可求得AMKN,再利用三角形内角和可求得P【详解】解:PAPB,AB,在AMK和BKN中,AMKBKN(SAS),AMKBKN,A+AMKMKN+BKN,AMKN40,P180AB1804040100,故答案为100【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得AMKBKN是解题的关键18、【解析】试题解析: 所以 故答案为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)点C(1,);(1)yx1x; yx11x
23、【解析】试题分析:(1)求得二次函数yax14axc对称轴为直线x1,把x1代入yx求得y=,即可得点C的坐标;(1)根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据SACD3即可求得m的值,即求得点A的坐标,把A.D的坐标代入yax14axc得方程组,解得a、c的值即可得二次函数的表达式.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,根据勾股定理用m表示出AC的长,根据ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a0,则点D在点C下方,求点D的坐标;第二种情况,若a0,则点D在点C上方,求点D的坐标,分
24、别把A、D的坐标代入yax14axc即可求得函数表达式.试题解析:(1)yax14axca(x1)14ac二次函数图像的对称轴为直线x1当x1时,yx,C(1,)(1)点D与点C关于x轴对称,D(1,),CD3.设A(m,m) (m1),由SACD3,得3(1m)3,解得m0,A(0,0).由A(0,0)、 D(1,)得解得a,c0.yx1x.设A(m,m)(m1),过点A作AECD于E,则AE1m,CEm,AC(1m),CDAC,CD(1m).由SACD10得(1m)110,解得m1或m6(舍去),m1A(1,),CD5.若a0,则点D在点C下方,D(1,),由A(1,)、D(1,)得解得y
25、x1x3.若a0,则点D在点C上方,D(1,),由A(1,)、D(1,)得解得yx11x.考点:二次函数与一次函数的综合题.20、(1)80,100;(2)100件,22000元;(3)答案见解析.【解析】(1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a80,再检验a是否符合条件,得到答案.(2)先设购机A型商品x件,则由题意可得到等式80x+100(200x)18000,解得,x100;再设获得的利润为w元,由题意可得w(16080)x+(240100)(200x)60x+28000,当x=100时代入w60x+28000,从而得答案.(3)
26、设获得的利润为w元,由题意可得w(a60)x+28000,分类讨论:当50a60时,当a60时,当60a70时,各个阶段的利润,得出最大值.【详解】解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件, ,解得,a80,经检验,a80是原分式方程的解,a+20100,答:A、B型商品的进价分别为80元/件、100元/件;(2)设购机A型商品x件,80x+100(200x)18000,解得,x100,设获得的利润为w元,w(16080)x+(240100)(200x)60x+28000,当x100时,w取得最大值,此时w22000,答:该客商计划最多投入18000元用于购买
27、这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;(3)w(16080+a)x+(240100)(200x)(a60)x+28000,50a70,当50a60时,a600,y随x的增大而减小,则甲100件,乙100件时利润最大;当a60时,w28000,此时甲乙只要是满足条件的整数即可;当60a70时,a600,y随x的增大而增大,则甲120件,乙80件时利润最大【点睛】本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.21、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】(1)根据折线统计图数字进行
28、填表即可; (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,70x74无,共0个;75x79之间有75,共1个;80x84之间有84,82,1,83,共4个;85x89之间有89,86,86,85,86,共5个;90x94之间和95x100无,共0个故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为8975=14分;甲的成绩为从低到高排列为:75,1,82,83,84,85,
29、86,86,86,89,中位数为(8485)84.5;乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小或:乙,理由:在90x100的分数段中,乙的次数大于甲(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据22、(1)MN
30、与AB的关系是:MNAB,MNAB,(2)2,4;(2)yx22;在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【解析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)根据题意得出抛物线必过(2,0),进而代入求出答案;根据yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,进而得出答案【详解】(1)MN与AB的关系是:MNAB,MNAB,如图1,AMB是等腰直角三角形,且N为AB的中点,MNAB,MNAB,故答案为MNAB,MNAB;(2)抛物线y对应的准
31、蝶形必经过B(m,m),mm2,解得:m2或m0(不合题意舍去),当m2则,2x2,解得:x2,则AB2+24;故答案为2,4;(2)由已知,抛物线对称轴为:y轴,抛物线yax24a(a0)对应的碟宽在x 轴上,且AB1抛物线必过(2,0),代入yax24a(a0),得,9a4a0,解得:a,抛物线的解析式是:yx22;由知,如图2,yx22的对称轴上P(0,2),P(0,2)时,APB 为直角,在此抛物线的对称轴上有这样的点P,使得APB 为锐角,yp的取值范围是yp2或yp2【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键23、(1)y;(
32、2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP3|n1|,SBDP1|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k133,反比例函数解析式为y
33、; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC|xPxA|3|n1|,SBDPBD|xBxP|1|3n|,SACPSBDP,3|n1|1|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)
34、【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键24、(1)所抽取的学生人数为40人(2)37.5%(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数总人数100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【详解】(1)频数之和=3+6+7+9+10+5=40,所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=100%=37.5%;(3)视力x4
35、.4之间活动前有9人,活动后只有5人,人数明显减少;活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.25、技术改进后每天加工1个零件【解析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得, 解得x=100, 经检验x=100是原方程的解,则改进后每天加工1答:技术改进后每天加工1个零件点睛:本题主要考查的是分式方程的应用,属于基
36、础题型根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验26、(1)110DE=EF;(1)90AE1+DB1=DE1 【解析】试题分析:(1)由等边三角形的性质得出AC=BC,BAC=B=60,求出ACF=BCD,证明ACFBCD,得出CAF=B=60,求出EAF=BAC+CAF=110;证出DCE=FCE,由SAS证明DCEFCE,得出DE=EF即可;(1)由等腰直角三角形的性质得出AC=BC,BAC=B=45,证出ACF=BCD,由SAS证明ACFBCD,得出CAF=B=45,AF=DB,求出EAF=BAC+CAF=90;证出DCE=FCE,由SAS证明DCEFCE,得
37、出DE=EF;在RtAEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论试题解析:解:(1)ABC是等边三角形,AC=BC,BAC=B=60DCF=60,ACF=BCD在ACF和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=60,EAF=BAC+CAF=110;DE=EF理由如下:DCF=60,DCE=30,FCE=6030=30,DCE=FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF;(1)ABC是等腰直角三角形,ACB=90,AC=BC,BAC=B=45DCF=90,ACF=BCD在ACF
38、和BCD中,AC=BC,ACF=BCD,CF=CD,ACFBCD(SAS),CAF=B=45,AF=DB,EAF=BAC+CAF=90;AE1+DB1=DE1,理由如下:DCF=90,DCE=45,FCE=9045=45,DCE=FCE在DCE和FCE中,CD=CF,DCE=FCE,CE=CE,DCEFCE(SAS),DE=EF在RtAEF中,AE1+AF1=EF1,又AF=DB,AE1+DB1=DE127、()()=30或150时,BAG=90当=315时,A、B、F在一条直线上时,AF的长最大,最大值为+2,此时=315,F(+,)【解析】(1)根据正方形的性质以及勾股定理即可解决问题,(
39、2)因为BAG=90,BG=2AB,可知sinAGB=,推出AGB=30,推出旋转角=30,据对称性可知,当ABG=60时,BAG=90,也满足条件,此时旋转角=150,当=315时,A、B、F在一条直线上时,AF的长最大.【详解】()如图1中,A(0,1),OA=1,四边形OADC是正方形,OAD=90,AD=OA=1,OD=AC=,AB=BC=BD=BO=,BD=DG,BG=,=()如图2中,BAG=90,BG=2AB,sinAGB=,AGB=30,ABG=60,DBG=30,旋转角=30,根据对称性可知,当ABG=60时,BAG=90,也满足条件,此时旋转角=150,综上所述,旋转角=30或150时,BAG=90如图3中,连接OF,四边形BEFG是正方形的边长为BF=2,当=315时,A、B、F在一条直线上时,AF的长最大,最大值为+2,此时=315,F(+,)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用