河北省保定市名校2022-2023学年中考数学五模试卷含解析.doc

上传人:lil****205 文档编号:88305797 上传时间:2023-04-25 格式:DOC 页数:15 大小:702KB
返回 下载 相关 举报
河北省保定市名校2022-2023学年中考数学五模试卷含解析.doc_第1页
第1页 / 共15页
河北省保定市名校2022-2023学年中考数学五模试卷含解析.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《河北省保定市名校2022-2023学年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省保定市名校2022-2023学年中考数学五模试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知抛物线y=ax2(2a+1)x+a1与x轴交于A(x1,0),B(x2,0)两点,若x11,x22,则a的取值范围是()Aa3B0a3Ca3D3a02有一种球状细菌的直径用科学记数法表

2、示为2.16103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米3七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158159160160160161169乙组158159160161161163165以下叙述错误的是( )A甲组同学身高的众数是160B乙组同学身高的中位数是161C甲组同学身高的平均数是161D两组相比,乙组同学身高的方差大4根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A9B7C9D75下面的几何体中,主(正)视图为三角形的是( )ABCD6如图所示的四边形,与选项中的

3、一个四边形相似,这个四边形是()ABCD7如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D118完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m9下列美丽的壮锦图案是中心对称图形的是()ABCD10按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC与DEF是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D411如图,点从矩形的

4、顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( ) ABCD12已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )A3.61106B3.61107C3.61108D3.61109二、填空题:(本大题共6个小题,每小题4分,共24分)13安全问题大于天,为加大宣传力度,提高学生的安全意识,乐陵某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:互相关心;互相提醒;不要相互嬉水;相互比潜水深度;选择水流湍急的水域;选择有人看护的游泳池小颖从这6

5、张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是_14点A(3,y1),B(2,y2),C(3,y3)在抛物线y=2x24x+c上,则y1,y2,y3的大小关系是_15如图,边长为6cm的正三角形内接于O,则阴影部分的面积为(结果保留)_16如图,点E在正方形ABCD的边CD上若ABE的面积为8,CE=3,则线段BE的长为_17实数,3,0中的无理数是_18如图,中,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么的面积的最小值为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在某市组织的大型商业演出活动中,对团体购买门票

6、实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率20(6分)计算:(1)42tan60+ 21(6分)在ABC中,A,B都是锐角,且sinA=,tanB=,AB=10,求ABC的面积.22(8分)先化简,再求值:,其中.23(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为米,斜坡BC的坡度i=1:小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从

7、E处测得旗杆顶部A的仰角为45,旗杆底部B的仰角为20(1)求坡角BCD;(2)求旗杆AB的高度(参考数值:sin200.34,cos200.94,tan200.36)24(10分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).25(10分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概

8、率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率26(12分)黄石市在创建国家级文明卫生城市中,绿化档次不断提升某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元(1)求A种,B种树木每棵各多少元; (2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍学校与中标

9、公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用27(12分)如图,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过D作DEAC,垂足为E证明:DE为O的切线;连接OE,若BC4,求OEC的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由已知抛物线求出对称轴,解:抛物线:,对称轴,由判别式得出a的取值范围,由得故选B2、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形

10、式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定3、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得【详解】A甲组同学身高的众数是160,此选项正确;B乙组同学身高的中位数是161,此选项正确;C甲组同学身高的平均数是161,此选项正确;D甲组的方差为,乙组的方差为,甲组的方差大,此选项错误故选D【点睛】本题考查了众数、中位数和平均数及方差

11、,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键4、C【解析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案【详解】当x=7时,y=6-7=-1,当x=4时,y=24+b=-1,解得:b=-9,故选C【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法5、C【解析】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形故选C6、D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可【详解】解:作AEBC于E,则四边形AECD为矩形,EC=AD=1,AE=C

12、D=3,BE=4,由勾股定理得,AB=5,四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键7、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360,根据题意得:110(n-2)=3360解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决8、D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a

13、+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D9、A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.10、C【解析】根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图

14、形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似性质得出ABC与DEF是位似图形,ABC与DEF是相似图形,将ABC的三边缩小的原来的,ABC与DEF的周长比为2:1,故选项错误,根据面积比等于相似比的平方,ABC与DEF的面积比为4:1故选C【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键11、C【解析】由函数图象可知AB=22=4,BC=(6-2) 2=8,根据矩形的面积公式可求出【详解】由函数图象可知AB=22=4,BC=(6-2) 2=8,矩形的面积为48=32,故选:C.【点睛】本题考查动点运动问题、矩形面

15、积等知识,根据图形理解ABP面积变化情况是解题的关键,属于中考常考题型12、C【解析】分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:将361 000 000用科学记数法表示为3.611故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】根据事件的描述可得到描述正确的有,即可得到答案.【详解】共有6张纸条,其中正确的有互相关心;互相提醒;不要相互嬉水;选择有人看护的游泳池,共4张,抽到内容描述

16、正确的纸条的概率是, 故答案为:【点睛】此题考查简单事件的概率的计算,正确掌握事件的概率计算公式是解题的关键.14、y2y3y1【解析】把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案【详解】y=2x2-4x+c,当x=-3时,y1=2(-3)2-4(-3)+c=30+c,当x=2时,y2=222-42+c=c,当x=3时,y3=232-43+c=6+c,c6+c30+c,y2y3y1,故答案为y2y3y1【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键15、(43)cm1【解析】连接OB、OC,作OHBC于H,根据圆

17、周角定理可知BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=S扇形OBC-SOBC即可得答案【详解】:连接OB、OC,作OHBC于H,则BH=HC= BC= 3,ABC为等边三角形,A=60,由圆周角定理得,BOC=1A=110,OB=OC,OBC=30,OB=1 ,OH=,阴影部分的面积= 6=43 ,故答案为:(43)cm1【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.16、5.【解析】试题解析:过E作EMAB于M,四边形ABCD是正方形,AD=BC=CD=AB,EM=AD,B

18、M=CE,ABE的面积为8,ABEM=8,解得:EM=4,即AD=DC=BC=AB=4,CE=3,由勾股定理得:BE=5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理17、【解析】无理数包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数,根据以上内容判断即可【详解】解:4,是有理数,3、0都是有理数,是无理数故答案为:【点睛】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数18、4.【解析】过E作EGAF,交FA的延长线于G,由折叠可得EAG30,而当ADBC时,AD最短,依据BC7,ABC的面积

19、为14,即可得到当ADBC时,AD4AEAF,进而得到AEF的面积最小值为:AFEG424.【详解】解:如图,过E作EGAF,交FA的延长线于G,由折叠可得,AFAEAD,BAEBAD,DACFAC,BAC75,EAF150,EAG30,EGAEAD,当ADBC时,AD最短,BC7,ABC的面积为14,当ADBC时, 即:,.AEF的面积最小值为:AFEG424,故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)1(2)10%【解析】试题分析:(1)设每张门票的原定票价为x

20、元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得,解得x=1经检验,x=1是原方程的根答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y,根据题意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去)答:平均每次降价10%考点:1.一元二次方程的应用;2.分式方程的应用20、1【解析】

21、首先利用乘方、二次根式的性质以及特殊角的三角函数值、零指数幂的性质分别化简求出答案解:原式=1“点睛”此题主要考查了实数运算,正确化简各数是解题关键,21、【解析】根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解【详解】如图:由已知可得:A=30,B=60,ABC为直角三角形,且C=90,AB=10,BC=ABsin30=10=5,AC=ABcos30=10=,SABC=.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形22、,4.【解析】先括号内通分,然后计算除法,最后代入化简即可【详解】原式= . 当时,原式

22、=4.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.23、旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB

23、的高度为6.4米。24、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;(2)根据函数的特点得出a=m,-=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标【详解】解:(1)答案不唯一,如;(2)y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,即a=m,-=0,整理得m=a,n=-b,p=c,则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,函数y1+y2的顶点坐标为(0,2c)【点睛】本题考查了

24、二次函数的图象与几何变换,得出变换的规律是解题的关键25、(1)(2)【解析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率【详解】解:(1)确定小亮打第一场,再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为【点睛】本题主要考查了列表法与树状图法;概率公式26、 (1) A种树每棵2元,B种树每棵

25、80元;(2) 当购买A种树木1棵,B种树木25棵时,所需费用最少,最少为8550元【解析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为x棵,则购买B种树木为(2-x)棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得x的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答【详解】解:(1)设A种树木每棵x元,B种树木每棵y元,根据题意,得 ,解得 ,答:A种树木每棵2元,B种树木每棵80元(2)设购买A种树木x棵,则B

26、种树木(2x)棵,则x3(2x)解得x1又2x0,解得x21x2设实际付款总额是y元,则y0.92x80(2x)即y18x7 3180,y随x增大而增大,当x1时,y最小为1817 38 550(元)答:当购买A种树木1棵,B种树木25棵时,所需费用最少,为8 550元27、 (1)证明见解析;(2)【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的O,可得CDAB,又由等腰三角形ABC的底角为30,可得AD=BD,即可证得ODAC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得BOD,ODE,ADE以及ABC的面积,继而求得答案试题解析:(1)证明:连接OD,CD,BC为O直径,BDC=90,即CDAB,ABC是等腰三角形,AD=BD,OB=OC,OD是ABC的中位线,ODAC,DEAC,ODDE,D点在O上,DE为O的切线;(2)解:A=B=30,BC=4,CD=BC=2,BD=BCcos30=2,AD=BD=2,AB=2BD=4,SABC=ABCD=42=4,DEAC,DE=AD=2=,AE=ADcos30=3,SODE=ODDE=2=,SADE=AEDE=3=,SBOD=SBCD=SABC=4=,SOEC=SABC-SBOD-SODE-SADE=4-=

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁