《河北省石家庄市名校2022-2023学年中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省石家庄市名校2022-2023学年中考数学全真模拟试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1实数a,b在数轴上对应的点的位置如图所示,则正确的结论是()Aa+b0Ba|2|CbD22018的绝对值是( )A2018B2018CD20183已知一个多边形的内角和是外角和的3倍,则这个多边形是()A五边形B六边形C七边形D八边形4
2、1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为()A0.135106B1.35105C13.5104D1351035把抛物线y2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()Ay2(x+1)2+1By2(x1)2+1Cy2(x1)21Dy2(x+1)216如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A60海里B45海里C20海里D30海里7若3x3y,则下列不等式中一定成立的是 ( )ABCD8化简的结果是()
3、A B C D9正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180后,C点的坐标是( )A(2,0)B(3,0)C(2,1)D(2,1)10小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25 ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克若设早上葡萄的价格是 x 元/千克,则可列方程( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 12阅读以下作图过程:第一步
4、:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为_13如图,在平面直角坐标系中,点P的坐标为(0,4),直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_14如图,长方体的底面边长分别为1cm 和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_cm15如图,平行于x轴的直线AC分别交抛物线
5、y1=x2(x0)与y2=(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则 =_16一个正n边形的中心角等于18,那么n_三、解答题(共8题,共72分)17(8分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C(1)求证:ACD=B;(2)如图2,BDC的平分线分别交AC,BC于点E,F,求CEF的度数18(8分)如图1,在平面直角坐标系中,一次函数y1x+8的图象与x轴,y轴分别交于点A,点C,过点A作ABx轴,垂足为点A,过点C作CBy轴,垂足为点C,两条垂线相交于点B(1)线段AB,BC,AC的长分别为AB ,BC
6、,AC ;(1)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1请从下列A、B两题中任选一题作答,我选择 题A:求线段AD的长;在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由B:求线段DE的长;在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由19(8分)在中, , 是的角平分线,交于点 .(1)求的长;(2)求的长.20(8分)(1)计算:()1+(2018)04c
7、os30(2)解不等式组:,并把它的解集在数轴上表示出来21(8分)如图,AB是O的直径,D是O上一点,点E是AC的中点,过点A作O的切线交BD的延长线于点F连接AE并延长交BF于点C(1)求证:AB=BC;(2)如果AB=5,tanFAC=,求FC的长22(10分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m0)的图象交于点A(3,1),且过点B(0,2)(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且ABP的面积是3,求点P的坐标23(12分)淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动甲网店销售的A商品的成本为30元
8、/件,网上标价为80元/件“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标
9、价24如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上 (1)b =_,c =_,点B的坐标为_;(直接填写结果)(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据数轴上点的位置,可得a,b,根据有理数的运算,可得答案【详解】a2,2b1
10、A.a+b0,故A不符合题意;B.a|2|,故B不符合题意;C.b1,故C不符合题意;D.0,故D符合题意;故选D【点睛】本题考查了实数与数轴,利用有理数的运算是解题关键2、D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:2018的绝对值是2018,即故选D点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.3、D【解析】根据多边形的外角和是360,以及多边形的内角和定理即可求解【详解】设多边形的边数是n,则(n2)180=3360,解得:n=8.故选D.【点
11、睛】此题考查多边形内角与外角,解题关键在于掌握其定理.4、B【解析】根据科学记数法的表示形式(a10n的形式,其中1|a|10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数)【详解】解:135000用科学记数法表示为:1.351故选B【点睛】科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、B【解析】函数y=-2x2的顶点为(0,0),向上平移1个单位,再向右平移1个单位的顶点为(1,1),将函数y=-2x2
12、的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点6、D【解析】根据题意得出:B=30,AP=30海里,APB=90,再利用勾股定理得出BP的长,求出答案【详解】解:由题意可得:B=30,AP=30海里,APB=90,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)故选:D【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键7、A【解析】两边都除以3,得xy,两边都加y
13、,得:x+y0,故选A8、C【解析】试题解析:原式=故选C.考点:二次根式的乘除法9、B【解析】试题分析:正方形ABCD绕点A顺时针方向旋转180后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解试题解析:AC=2,则正方形ABCD绕点A顺时针方向旋转180后C的对应点设是C,则AC=AC=2,则OC=3,故C的坐标是(3,0)故选B考点:坐标与图形变化-旋转10、B【解析】分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.详解:设早上葡萄的价格是 x 元/千克,由题意得,.故选B.点睛:本题考查了分式方程的实际应用,解
14、题的关键是读懂题意,找出列方程所用到的等量关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60,OB=OA=AB=4,OD= OB=2,BD=OBsin60=4=2,B(2,2 ),k=22 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中12、作图见解析,【
15、解析】解:如图,点M即为所求连接AC、BC由题意知:AB=4,BC=1AB为圆的直径,ACB=90,则AM=AC=,点M表示的数为.故答案为点睛:本题主要考查作图尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理13、【解析】认真审题,根据垂线段最短得出PMAB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用PBMABO,即可求出本题的答案【详解】解:如图,过点P作PMAB,则:PMB=90,当PMAB时,PM最短,因为直线y=x3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,3),在RtAOB中,AO=4,BO=3,AB=,BMP=AOB=9
16、0,B=B,PB=OP+OB=7,PBMABO,即:,所以可得:PM=14、1【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果【详解】解:将长方体展开,连接A、B,AA=1+3+1+3=8(cm),AB=6cm,根据两点之间线段最短,AB=1cm故答案为1考点:平面展开-最短路径问题15、3【解析】首先设点B的横坐标,由点B在抛物线y1=x2(x0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DEAC,得出E的坐标,即可得出DE和AB,进而得解.【详解】设点B的横坐标为,则平行于x轴的直线AC又CD平行于y轴
17、又DEAC=3【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.16、20【解析】由正n边形的中心角为18,可得方程18n=360,解方程即可求得答案【详解】正n边形的中心角为18,18n=360,n=20.故答案为20.【点睛】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.三、解答题(共8题,共72分)17、(1)详见解析;(2)CEF=45【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出DCOACB90,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明CEF=CFE即可求解试题解析:(1)证明:如图1中,连接
18、OCOAOC,12,CD是O切线,OCCD,DCO90,3290,AB是直径,1B90,3B(2)解:CEFECDCDE,CFEBFDB,CDEFDB,ECDB,CEFCFE,ECF90,CEFCFE4518、(1)2,3,3;(1)AD=5;P(0,1)或(0,2)【解析】(1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;(1)A利用折叠的性质得出BD=2AD,最后用勾股定理即可得出结论;分三种情况利用方程的思想即可得出结论;B利用折叠的性质得出AE,利用勾股定理即可得出结论;先判断出APC=90,再分情况讨论计算即可【详解】解:(1)一次函数y=1x+
19、2的图象与x轴,y轴分别交于点A,点C,A(3,0),C(0,2),OA=3,OC=2ABx轴,CBy轴,AOC=90,四边形OABC是矩形,AB=OC=2,BC=OA=3在RtABC中,根据勾股定理得,AC=3故答案为2,3,3;(1)选A由(1)知,BC=3,AB=2,由折叠知,CD=AD在RtBCD中,BD=ABAD=2AD,根据勾股定理得,CD1=BC1+BD1,即:AD1=16+(2AD)1,AD=5;由知,D(3,5),设P(0,y)A(3,0),AP1=16+y1,DP1=16+(y5)1APD为等腰三角形,分三种情况讨论:、AP=AD,16+y1=15,y=3,P(0,3)或(
20、0,3);、AP=DP,16+y1=16+(y5)1,y=,P(0,);、AD=DP,15=16+(y5)1,y=1或2,P(0,1)或(0,2)综上所述:P(0,3)或(0,3)或P(0,)或P(0,1)或(0,2)选B由A知,AD=5,由折叠知,AE=AC=1,DEAC于E在RtADE中,DE=;以点A,P,C为顶点的三角形与ABC全等,APCABC,或CPAABC,APC=ABC=90四边形OABC是矩形,ACOCAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O作ONAC于N,易证,AONACO,AN=,过点N作NHOA,NHOA,ANHACO,NH=,AH=,OH
21、=,N(),而点P1与点O关于AC对称,P1(),同理:点B关于AC的对称点P1,同上的方法得,P1()综上所述:满足条件的点P的坐标为:(0,0),(),()【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题19、(1)10;(2)的长为【解析】(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1) 在中, ;(2 )过点作于,平分,在和中 , .设,则在中, 解得即的长为
22、【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理20、 (1)-3;(2).【解析】分析:(1)代入30角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式= = -3.(2) 解不等式得: ,解不等式得:,不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30角的余弦函数值是本题解题的关键.21、 (1)见解析;(2).【解析】分析:(1)由AB是直径可得BEAC,
23、点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由FAC+CAB=90,CAB+ABE=90,可得FAC=ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CHAF于H,可证RtACHRtBAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.AB是O的直径,AEB=90,BEAC,而点E为AC的中点,BE垂直平分AC,BA=BC;(2)解:AF为切线,AFAB,FAC+CAB=90,CAB+ABE=90,FAC=ABE,tanABE=FAC=,在RtABE中,tanABE=,设
24、AE=x,则BE=2x,AB=x,即x=5,解得x=,AC=2AE=2,BE=2作CHAF于H,如图,HAC=ABE,RtACHRtBAC,=,即=,HC=2,AH=4,HCAB,=,即=,解得FH=在RtFHC中,FC=点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到RtACHRtBAC是解(2)的关键.22、(1)y=;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式; (2
25、)首先求得AB与x轴的交点,设交点是C,然后根据SABP=SACP+SBCP即可列方程求得P的横坐标试题解析:(1)反比例函数y=(m0)的图象过点A(1,1), 1= m=1 反比例函数的表达式为y= 一次函数y=kx+b的图象过点A(1,1)和B(0,-2) , 解得:, 一次函数的表达式为y=x-2; (2)令y=0,x-2=0,x=2, 一次函数y=x-2的图象与x轴的交点C的坐标为(2,0) SABP=1, PC1+PC2=1 PC=2, 点P的坐标为(0,0)、(4,0)【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据SABP=SACP+SBCP列方程是关
26、键23、(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为1元【解析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润每件的利润销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1x)239.2,解得:x10.330%,x21.7(不合题意,舍去)答:平均每次降价
27、率为30%,才能使这件A商品的售价为39.2元(2)根据题意得:0.580(1+a%)3010(1+2a%)30000,整理得:a2+75a25000,解得:a125,a21(不合题意,舍去),80(1+a%)80(1+25%)1答:乙网店在“双十一”购物活动这天的网上标价为1元【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键24、(1),(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛
28、物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标【详解】解:(1)将点A和点C的坐标代入抛物线的解析式得:,解得:b=2,c=1,抛物线的解析式为令,解得:,点B的坐标为(1,0)故答案为2;1;(1,0)(2)存在理由:如图所示:当ACP1=90由(1)可知点A的坐标为(1,0)设AC的解析式为y=kx1将点A的坐标代入得1k1=0,解得k=1,直线AC的解析式为
29、y=x1,直线CP1的解析式为y=x1将y=x1与联立解得,(舍去),点P1的坐标为(1,4)当P2AC=90时设AP2的解析式为y=x+b将x=1,y=0代入得:1+b=0,解得b=1,直线AP2的解析式为y=x+1将y=x+1与联立解得=2,=1(舍去),点P2的坐标为(2,5)综上所述,P的坐标是(1,4)或(2,5)(1)如图2所示:连接OD由题意可知,四边形OFDE是矩形,则OD=EF根据垂线段最短,可得当ODAC时,OD最短,即EF最短由(1)可知,在RtAOC中,OC=OA=1,ODAC,D是AC的中点又DFOC,DF=OC=,点P的纵坐标是,解得:x=,当EF最短时,点P的坐标是:(,)或(,)