《江苏省苏州市草桥实验中学2022-2023学年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市草桥实验中学2022-2023学年中考数学对点突破模拟试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作2018 年 2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总 结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到 2020 年 要达到 85000 块其中 85000 用科学记数法可表示为( )A0.85 105B8.5 104C85 10-3D8.5 10-42如图,C,B是线段AD上的两点,若,则AC与CD的关系为( ) ABCD不能确定3下列各式中,计算正确的是 ( )ABCD4若一个函数的图象是经过
3、原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )ABCD5下列计算正确的是()Ax2+x3=x5Bx2x3=x5C(x2)3=x8Dx6x2=x36如图,点A、B、C都在O上,若AOC=140,则B的度数是()A70B80C110D1407计算3a2a2的结果是()A4a2 B3a2 C2a2 D38关于的叙述正确的是()A=B在数轴上不存在表示的点C=D与最接近的整数是39如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD10下列运算正确的是()A2a2+3a2=5a4B()2=4C(a+b)(ab)=a2b2D8
4、ab4ab=2ab二、填空题(共7小题,每小题3分,满分21分)11若点与点关于原点对称,则_12如图,等腰ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则BEC的周长为_13北京奥运会国家体育场“鸟巢”的建筑面积为258000平方米,那么258000用科学记数法可表示为 14 “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示第五组被抽到的概率是_15如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长_cm16如图,角的一边在x轴上,另一边为射线OP,点P(2,2),则ta
5、n=_17已知ABC中,C=90,AB=9,把ABC 绕着点C旋转,使得点A落在点A,点B落在点B若点A在边AB上,则点B、B的距离为_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,BAC=90,AB=AC,D为AB边上一点,连接CD,过点A作AECD于点E,且交BC于点F,AG平分BAC交CD于点G.求证:BF=AG.19(5分)根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?20(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)
6、求该二次函数的表达式;(2)过点A的直线ADBC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,DMN的面积最大,并求出这个最大值21(10分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AEED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE求证:ABEDEF若正方
7、形的边长为4,求BG的长22(10分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量23(12分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若
8、要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率24(14分)在平面直角坐标系xOy中,抛物线yax2+2ax+c(其中a、c为常数,且a0)与x轴交于点A(3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1(1)求抛物线的表达式;(2)求CAB的正切值;(3)如果点P是x轴上的一点,且ABPCAO,直接写出点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据科学记数法的定义,科学记数法的表示形式为a10 n ,其中1|a|10,n为整数,表示时关键要正
9、确确定a的值以及n的值在确定n的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5104,故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】AB=CD,AC+BC=BC+BD,即AC=BD,又BC=2AC,BC=2BD,CD=3BD=3AC.故选B【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性同时,灵活运用线段的和、差、倍
10、转化线段之间的数量关系是十分关键的一点3、C【解析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【详解】A、无法计算,故此选项错误;B、a2a3=a5,故此选项错误;C、a3a2=a,正确;D、(a2b)2=a4b2,故此选项错误故选C【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键4、D【解析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为ykx,把点(3,2a)与点(8a,3)代入得出方程组 ,求出方程组的解即可【详解】解:设一次函数的解析式为:ykx,把点(3,2a)与点(8a
11、,3)代入得出方程组 ,由得:,把代入得: ,解得:.故选:D.【点睛】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力5、B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案详解:A、不是同类项,无法计算,故此选项错误;B、 正确;C、 故此选项错误;D、 故此选项错误;故选:B点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键6、C【解析】分析:作对的圆周角APC,如图,利用圆内接四边形的性质得到P=40,然后根据圆周角定理求AOC的度数详解:作对的圆周角APC,如图,P=
12、AOC=140=70P+B=180,B=18070=110,故选:C点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半7、C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.8、D【解析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;选项D
13、,与最接近的整数是=1故选D【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.9、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形10、B【解析】根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答【详解】A. 2a2+3a2=5a2,故本选项错误;B. ()-2=4,
14、正确;C. (a+b)(ab)=a22abb2,故本选项错误;D. 8ab4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为112、3【解析】试题分析:因为等腰ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以BEC的周长为=BE+CE
15、+BC=AE+CE+BC=AC+BC=8+5=3考点:3等腰三角形的性质;3垂直平分线的性质13、2.581【解析】科学记数法就是将一个数字表示成(a10的n次幂的形式),其中1|a|10,n表示整数即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂258 000=2.58114、【解析】根据概率是所求情况数与总情况数之比,可得答案【详解】因为共有六个小组,所以第五组被抽到的概率是,故答案为:【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比15、13【解析】试题解析:因为正方形AECF的面积为50cm2,所以 因为菱形ABCD的面积为120cm2,所以
16、 所以菱形的边长 故答案为13.16、 【解析】解:过P作PAx轴于点AP(2,),OA=2,PA=,tan=.故答案为点睛:本题考查了解直角三角形,正切的定义,坐标与图形的性质,熟记三角函数的定义是解题的关键17、4【解析】过点C作CHAB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA的值,然后利用旋转的性质可判定ACABCB,继而利用相似三角形的对应边成比例的性质可得出BB的值【详解】解:过点C作CHAB于H,在RtABC中,C=90,cosA= ,AC=ABcosA=6,BC=3 ,在RtACH中,AC=6,cosA=,AH=ACcosA=4,
17、由旋转的性质得,AC=AC,BC=BC,ACA是等腰三角形,因此H也是AA中点,AA=2AH=8,又BCB和ACA都为等腰三角形,且顶角ACA和BCB都是旋转角,ACA=BCB,ACABCB,即 ,解得:BB=4.故答案为:4.【点睛】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出ACABCB三、解答题(共7小题,满分69分)18、见解析【解析】根据角平分线的性质和直角三角形性质求BAF=ACG.进一步证明ABFCAG,从而证明BF=AG.【详解】证明:BAC=90,AB=AC,B=ACB=45,又AG平分BAC,GAC=BAC=4
18、5,又BAC=90,AECD,BAF+ADE=90,ACG +ADE=90,BAF=ACG. 又AB=CA,ABFCAG(ASA),BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.19、详见解析【解析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可【详解】解:(1)设一个小球使水面升高x厘米,由图意,得2x=2116,解得x=1设一个大球使水面升高y厘米,由图意,得1y=2116,解得:y=2所以,放入一个小球水面升高1cm,放入一
19、个大球水面升高2cm(1)设应放入大球m个,小球n个,由题意,得,解得:答:如果要使水面上升到50cm,应放入大球4个,小球6个20、(1)y=x2+2x+3;(2)y=x1;(3)P()或P(4.5,0);当t=时,SMDN的最大值为【解析】(1)把A(-1,0),C(0,3)代入y=ax2+2x+c即可得到结果;(2)在y=-x2+2x+3中,令y=0,则-x2+2x+3=0,得到B(3,0),由已知条件得直线BC的解析式为y=-x+3,由于ADBC,设直线AD的解析式为y=-x+b,即可得到结论;(3)由BCAD,得到DAB=CBA,全等只要当或时,PBCABD,解方程组得D(4,5),
20、求得设P的坐标为(x,0),代入比例式解得或x=4.5,即可得到或P(4.5,0);过点B作BFAD于F,过点N作NEAD于E,在RtAFB中,BAF=45,于是得到sinBAF 求得求得 由于于是得到即可得到结果【详解】(1)由题意知: 解得 二次函数的表达式为 (2)在 中,令y=0,则 解得: B(3,0),由已知条件得直线BC的解析式为y=x+3,ADBC,设直线AD的解析式为y=x+b,0=1+b,b=1,直线AD的解析式为y=x1;(3)BCAD,DAB=CBA,只要当:或时,PBCABD,解得D(4,5), 设P的坐标为(x,0),即或 解得或x=4.5,或P(4.5,0),过点
21、B作BFAD于F,过点N作NEAD于E,在RtAFB中, sinBAF 又 当时,的最大值为【点睛】属于二次函数的综合题,考查待定系数法求二次函数解析式,锐角三角形函数,相似三角形的判定与性质,二次函数的最值等,综合性比较强,难度较大.21、(1)见解析;(2)BG=BC+CG=1【解析】(1)利用正方形的性质,可得A=D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得ABEDEF;(2)根据相似三角形的预备定理得到EDFGCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:ABCD为正方形,AD=AB=DC=BC,A=D=
22、90 .AE=ED,AE:AB=1:2.DF=DC,DF:DE=1:2,AE:AB=DF:DE,ABEDEF;(2)解:ABCD为正方形,EDBG,EDFGCF,ED:CG=DF:CF.又DF=DC,正方形的边长为4,ED=2,CG=6,BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.22、现在平均每天清雪量为1立方米【解析】分析:设现在平均每天清雪量为x立方米,根据等量关系“现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同”列分式方程求解.详解:设现在平均每天清雪量为x立方米,由题意,得解得
23、x=1经检验x=1是原方程的解,并符合题意答:现在平均每天清雪量为1立方米点睛:此题主要考查了分式方程的应用,关键是确定问题的等量关系,注意解分式方程的时候要进行检验.23、(1)500, 90;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数所占比例,D厂家对应的圆心角为360所占比例;(2)C厂的零件数=总数所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解试题解析:(1)D厂的零件比例=1-20%-20%-35%=2
24、5%,D厂的零件数=200025%=500件;D厂家对应的圆心角为36025%=90;(2)C厂的零件数=200020%=400件,C厂的合格零件数=40095%=380件,如图:(3)A厂家合格率=630(200035%)=90%,B厂家合格率=370(200020%)=92.5%,C厂家合格率=95%,D厂家合格率470500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=考点:1.条形统计图;2.扇形统计图;3. 树状图法.24、(4)yx44x+3;(4);(3)点P的坐标是(4,0)【解析】(4) 先求
25、得抛物线的对称轴方程, 然后再求得点C的坐标,设抛物线的解析式为ya(x+4)4+4,将点 (-3, 0) 代入求得a的值即可;(4) 先求得A、 B、 C的坐标, 然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明ABC=90,最后,依据锐角三角函数的定义求解即可;(3) 连接BC,可证得AOB是等腰直角三角形,ACBBPO,可得代入个数据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线yax4+4ax+c的对称轴是直线,a0,抛物线开口向下,又与x轴有交点,抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(4,4)可设此抛物线的表达式是ya(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(3,0),可得a4因此,抛物线的表达式是yx44x+3(4)如图4,点B的坐标是(0,3)连接BCAB434+3448,BC444+444,AC444+4440,得AB4+BC4AC4ABC为直角三角形,ABC90,所以tanCAB=即CAB的正切值等于(3)如图4,连接BC,OAOB3,AOB90,AOB是等腰直角三角形,BAPABO45,CAOABP,CABOBP,ABCBOP90,ACBBPO,OP4,点P的坐标是(4,0)【点睛】本题主要考查二次函数的图像与性质,综合性大.