《江苏省苏州市平江中学2023年高考数学必刷试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市平江中学2023年高考数学必刷试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是( )ABCD2已知,分别为内角,的对边,的面积为,则( )AB4C5D3已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD4公
2、差不为零的等差数列an中,a1+a2+a5=13,且a1、a2、a5成等比数列,则数列an的公差等于( )A1B2C3D45下列命题是真命题的是( )A若平面,满足,则;B命题:,则:,;C“命题为真”是“命题为真”的充分不必要条件;D命题“若,则”的逆否命题为:“若,则”.6已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7若函数的图象过点,则它的一条对称轴方程可能是( )ABCD8若直线经过抛物线的焦点,则( )ABC2D9已知函数,不等式对恒成立,则的取值范围为( )ABCD10设全集
3、,集合,.则集合等于( )ABCD11已知,若,则( )ABCD12若不等式对于一切恒成立,则的最小值是 ( )A0BCD二、填空题:本题共4小题,每小题5分,共20分。13已知圆,直线与圆交于两点,若,则弦的长度的最大值为_.14已知为等比数列,是它的前项和.若,且与的等差中项为,则_.15已知集合,则_16若幂函数的图象经过点,则其单调递减区间为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.18(12分)设函数(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒
4、成立,求实数的取值范围19(12分)如图是圆的直径,垂直于圆所在的平面,为圆周上不同于的任意一点(1)求证:平面平面;(2)设为的中点,为上的动点(不与重合)求二面角的正切值的最小值20(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,湖面上的点在线段上,且,均与圆相切,切点分别为,其中栈道,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.21(12分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.(1)求抛物
5、线C的方程;(2)设的中垂线在轴上的截距为,求的取值范围.22(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方
6、程为,则,圆心在内公切线两侧,可得,化为,即,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.2、D【解析】由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.【详解】解:,即,即. ,则.,解得., 故选:D.【点睛】本题考查了正弦定理,考查了
7、余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.3、C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图4、B【解析】设数列的公差为.由,成等比数列,列关于的方程组,即求公差.【详解】设数列的公差为,.成等比数列,解可得.故选:.【点睛】本题考查等差数列基本量的计算,属于基础题.5、D【解析】根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,满足,则可能相交,故A错误;命题“:,”的否定为:,故B错误;为真,
8、说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.6、D【解析】根据面面平行的判定及性质求解即可【详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题7、B【解析】把
9、已知点坐标代入求出,然后验证各选项【详解】由题意,或,不妨取或,若,则函数为,四个选项都不合题意,若,则函数为,只有时,即是对称轴故选:B【点睛】本题考查正弦型复合函数的对称轴,掌握正弦函数的性质是解题关键8、B【解析】计算抛物线的交点为,代入计算得到答案.【详解】可化为,焦点坐标为,故.故选:.【点睛】本题考查了抛物线的焦点,属于简单题.9、C【解析】确定函数为奇函数,且单调递减,不等式转化为,利用双勾函数单调性求最值得到答案.【详解】是奇函数,易知均为减函数,故且在上单调递减,不等式,即,结合函数的单调性可得,即,设,故单调递减,故,当,即时取最大值,所以.故选:.【点睛】本题考查了根据函
10、数单调性和奇偶性解不等式,参数分离求最值是解题的关键.10、A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.11、B【解析】由平行求出参数,再由数量积的坐标运算计算【详解】由,得,则,所以故选:B【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键12、C【解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在
11、区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取的中点为M,由可得,可得M在上,当最小时,弦的长才最大.【详解】设为的中点,即,即,.设,则,得.所以,.故答案为:【点睛】本题考查直线与圆的位置关系的综合应用,考查学生的逻辑推理、数形结合的思想,是一道有一定难度的题.14、【解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,由于与的等差中项
12、为,则,则,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.15、【解析】解一元二次不等式化简集合,再进行集合的交运算,即可得到答案.【详解】,.故答案为:.【点睛】本题考查一元二次不等式的求解、集合的交运算,考查运算求解能力,属于基础题.16、【解析】利用待定系数法求出幂函数的解析式,再求出的单调递减区间【详解】解:幂函数的图象经过点,则,解得;所以,其中;所以的单调递减区间为故答案为:【点睛】本题考查了幂函数的图象与性质的应用问题,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1
13、)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,故综上,实数的取值范围是(2)设,则,令,在单调递增,也就是在单调递增,所以.当即时,不符合;当即时,符合当即时,根据零点存在定理,使,有时,在单调递减,时,在单调递增,成立,故只需即可,有,得,符合综上得,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类
14、讨论的数学思想方法,属于难题.18、 () .().【解析】()时,根据绝对值不等式的定义去掉绝对值,求不等式的解集即可;()不等式的解集为,等价于,求出在的最小值即可【详解】()当时,时,不等式化为,解得,即时,不等式化为,不等式恒成立,即时,不等式化为,解得,即综上所述,不等式的解集为()不等式的解集为 对任意恒成立当时,取得最小值为实数的取值范围是【点睛】本题考查了绝对值不等式的解法与应用问题,也考查了函数绝对值三角不等式的应用问题,属于常规题型19、(1)见解析(2)【解析】(1)推导出,从而平面,由面面垂直的判定定理即可得证(2)过作,以为坐标原点,建立如图所示空间坐标系,设,利用空
15、间向量法表示出二面角的余弦值,当余弦值取得最大时,正切值求得最小值;【详解】(1)因为,面,平面,平面,平面,又平面,平面平面;(2)过作,以为坐标原点,建立如图所示空间坐标系,则,设,则平面的一个法向量为设平面的一个法向量为则,即,令,如图二面角的平面角为锐角,设二面角为,则,时取得最大值,最大值为,则最小值为【点睛】本题考查面面垂直的证明,利用空间向量法解决立体几何问题,属于中档题.20、,;当时,栈道总长度最短.【解析】连,由切线长定理知:,即,则,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【详解】解:连,由切线长定理知:,又,故,则劣弧的长为,因此,优弧的长为,又,
16、故,即,所以,则;,其中,-0+单调递减极小值单调递增故时,所以当时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.21、;【解析】根据题意,求出直线方程并与抛物线方程联立,利用韦达定理,结合,即可求出抛物线C的方程;设,的中点为,把直线l方程与抛物线方程联立,利用判别式求出的取值范围,利用韦达定理求出,进而求出的中垂线方程,即可求得在轴上的截距的表达式,然后根据的取值范围求解即可.【详解】由题意可知,直线l的方程为,与抛物线方程方程联立可得,设,由韦达定理可得,因为,所以,解得,所以抛物线C的方程为;设,的中点为,由,消去可得,所以判别式,解得或,由韦达定理可得,所以的中垂线方程为,令则,因为或,所以即为所求.【点睛】本题考查抛物线的标准方程和直线与抛物线的位置关系,考查向量知识的运用;考查学生分析问题、解决问题的能力和运算求解能力;属于中档题.22、(1)(2)与交点的极坐标为,和【解析】(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【详解】(1)曲线的直角坐标方程为:,即 . 的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【点睛】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.