《江苏省淮安市盱眙中学2023年高考数学必刷试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省淮安市盱眙中学2023年高考数学必刷试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知平面,直线满足,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条
2、件2已知函数的最小正周期为的图象向左平移个单位长度后关于轴对称,则的单调递增区间为( )ABCD3已知,复数,且为实数,则( )ABC3D-34已知函数满足:当时,且对任意,都有,则( )A0B1C-1D5已知双曲线的一条渐近线方程是,则双曲线的离心率为( )ABCD6已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为ABCD7已知集合,则等于( )ABCD8已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱锥P-ABC的侧面积为9若复
3、数满足(是虚数单位),则( )ABCD10已知是函数的极大值点,则的取值范围是ABCD11已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、元)甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( )ABCD12已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为_.14已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲
4、线的离心率为_15二项式的展开式中项的系数为_16集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知四棱锥中,底面为等腰梯形,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.18(12分)已知椭圆:的离心率为,右焦点为抛物线的焦点.(1)求椭圆的标准方程;(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.19(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在
5、一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.20(12分)如图所示,直角梯形中,四边形为矩形,.(1)求证:平面平面;(2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,
6、求出线段的长,若不存在,请说明理由.21(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,).记数表中位于第i行第j列的元素为,其中(,).如:,.(1)设,请计算,;(2)设,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,对于整数t,t不属于数表M,求t的最大值.22(10分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值参考答案一、选择题:本题共12小题,每小题5分,共
7、60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】,是相交平面,直线平面,则“” “”,反之,直线满足,则或/或平面,即可判断出结论【详解】解:已知直线平面,则“” “”,反之,直线满足,则或/或平面, “”是“”的充分不必要条件故选:A.【点睛】本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力2、D【解析】先由函数的周期和图象的平移后的函数的图象性质得出函数的解析式,从而得出的解析式,再根据正弦函数的单调递增区间得出函数的单调递增区间,可得选项.【详解】因为函数的最小正周期是,所以,即,所以,的图象向左平移个单位长度后得到的函数解
8、析式为,由于其图象关于轴对称,所以,又,所以,所以,所以, 因为的递增区间是:,由,得:,所以函数的单调递增区间为().故选:D.【点睛】本题主要考查正弦型函数的周期性,对称性,单调性,图象的平移,在进行图象的平移时,注意自变量的系数,属于中档题.3、B【解析】把和 代入再由复数代数形式的乘法运算化简,利用虚部为0求得m值【详解】因为为实数,所以,解得.【点睛】本题考查复数的概念,考查运算求解能力.4、C【解析】由题意可知,代入函数表达式即可得解.【详解】由可知函数是周期为4的函数,.故选:C.【点睛】本题考查了分段函数和函数周期的应用,属于基础题.5、D【解析】双曲线的渐近线方程是,所以,即
9、 , ,即 ,故选D.6、B【解析】直线的倾斜角为,易得设双曲线C的右焦点为E,可得中,则,所以双曲线C的离心率为.故选B7、B【解析】解不等式确定集合,然后由补集、并集定义求解【详解】由题意或,故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型8、C【解析】根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱
10、锥的表面积、体积的计算问题,属于中档题.9、B【解析】利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.10、B【解析】方法一:令,则,当,时,单调递减,时,且,即在上单调递增,时,且,即在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,故选B方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得,故选B11、B【解析】甲、乙两人所扣租车费用相同即同为1元,或同为2元,或
11、同为3元,由独立事件的概率公式计算即得【详解】由题意甲、乙租车费用为3元的概率分别是,甲、乙两人所扣租车费用相同的概率为故选:B【点睛】本题考查独立性事件的概率掌握独立事件的概率乘法公式是解题基础12、B【解析】命题p:,为,又为真命题的充分不必要条件为,故二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径【详解】由题意可知:多面体的外接球即正四面体的外接球作面交于,连接,如图则,且为外接球的直径,可得,设三角形 的外
12、接圆的半径为,则,解得,设外接球的半径为,则可得,即,解得,设正三棱锥的高为,因为,所以,所以,而,所以正三棱锥的三条侧棱两两相互垂直,所以,设内切球的半径为,即解得:故答案为:.【点睛】本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析.14、【解析】由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故
13、答案为【点睛】本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.15、15【解析】由题得,令,解得,代入可得展开式中含x6项的系数.【详解】由题得,令,解得,所以二项式的展开式中项的系数为.故答案为:15【点睛】本题主要考查了二项式定理的应用,考查了利用通项公式去求展开式中某项的系数问题.16、【解析】分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)
14、见证明;(2)【解析】(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案【详解】(1)证明:在等腰梯形,易得 在中,则有,故,又平面,平面,即平面,故平面丄平面.(2)在梯形中,设, ,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,设平面的法向量为,由得,取,得,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积
15、的计算,考查了空间想象能力及计算能力,属于中档题18、(1);(2)见解析【解析】(1)由条件可得,再根据离心率可求得,则可得椭圆方程;(2)当与轴垂直时,设直线的方程为:,与椭圆联立求得的坐标,通过、斜率之积为列方程可得的值,进而可得的面积;当与轴不垂直时,设,的方程为,与椭圆方程联立,利用韦达定理和、斜率之积为可得,再利用弦长公式求出,以及到的距离,通过三角形的面积公式求解.【详解】(1)抛物线的焦点为,椭圆方程为;(2)()当与轴垂直时,设直线的方程为:代入得:,解得:,;()当与轴不垂直时,设,的方程为由,由, ,即整理得:代入得:到的距离综上:为定值.【点睛】本题考查椭圆方程的求解,
16、考查直线和椭圆的位置关系,考查韦达定理的应用,考查了学生的计算能力,是中档题.19、(1)分布见解析,期望为;(2).【解析】(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60203401010,所以【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量
17、的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.20、(1)见解析;(2)存在,长【解析】(1)先证面,又因为面,所以平面平面.(2)根据题意建立空间直角坐标系. 列出各点的坐标表示,设,则可得出向量,求出平面的法向量为,利用直线与平面所成角的正弦公式列方程求出或,从而求出线段的长.【详解】解:(1)证明:因为四边形为矩形,.面面又面平面平面(2)取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系.如图所示:则,设,;,设平面的法向量为,不防设.,化简得,解得或;当时,;当时,;综上存在这样的点,线段的长.【点睛】本题考查平面与平面垂直的判定定理的应用,考查利用线面
18、所成角求参数问题,是几何综合题,考查空间想象力以及计算能力.21、(1)(2)详见解析(3)29【解析】(1)将,代入,可求出,可代入求,可求结果(2)可求,通过反证法证明,(3)可推出,的最大值,就是集合中元素的最大值,求出【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,得,故(2)证明:已知,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,得,所以若,则存在,使,若,则存在,使,因此,对于正整数,考虑集合,即,下面证明:集合中至少有一元素是7的倍数反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,
19、6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,其中,则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立即集合中至少有一元素是7的倍数,不妨设该元素为,则存在,使,即,由已证可知,若,则存在,使,而,所以为负整数,设,则,且,所以,当,时,对于整数,若,则成立(3)下面用反证法证明:若对于整数,则,假设命题不成立,即,且则对于整数,存在,使成立,整理,得,又因为,所以且是7的倍数,因为,所以,所以矛盾,即假设不成立所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,所以【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题22、(1)见解析;(2).【解析】(1)取的中点,连接,通过证明,即可证得;(2)建立空间直角坐标系,利用向量的坐标表示即可得解.【详解】(1)证明:取的中点,连接是的中点,又,四边形是平行四边形,又平面平面,平面(2),同理可得:,又平面连接,设,则,建立空间直角坐标系 设平面的法向量为,则,则,取直线与平面所成角的正弦值为【点睛】此题考查证明线面平行,求线面角的大小,关键在于熟练掌握线面平行的证明方法,法向量法求线面角的基本方法,根据公式准确计算.