《江苏省泰兴市第四高级中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省泰兴市第四高级中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1下列结论中正确的个数是( )已知函数是一次函数,若数列通项公式为,则该数列是等差数列;若直线上有两个不同的点到平面的距离相等,则;在中,“”是“”的必要不充分条件;若,则的最大值为2.A1B2C3D02给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A12种B18种C24种D64种3已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4函数的图象大致为( )ABCD5从集合中随机选取一个数记为,从集合中随
3、机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD6若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为( )A2BCD7已知函数,则函数的零点所在区间为( )ABCD8已知集合U1,2,3,4,5,6,A2,4,B3,4,则( )A3,5,6B1,5,6C2,3,4D1,2,3,5,69已知函数满足=1,则等于( )A-BC-D10从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则ABCD11中国古代数学名著九章算术中记载了公元前344年商鞅督造的一种标准量器商鞅铜方升,其三视图如图所示(单位:
4、寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为( ) A3B3.4C3.8D412设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1cm,则其体重约增加0.85kgD若该大学某女生身高为170cm,则可断定其体重比为58.79kg二、填空题:本题共4小题,每小题5分,共20分。13在中,、的坐标分别为,且满足,为坐标原点,若点的坐标为,
5、则的取值范围为_.14设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则_15若向量满足,则实数的取值范围是_.16已知变量 (m0),且,若恒成立,则m的最大值_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围18(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.19(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.20(12分)如图,为等腰直角三角形,D为AC上一点,将沿BD折起,得到三棱锥
6、,且使得在底面BCD的投影E在线段BC上,连接AE. (1)证明:;(2)若,求二面角的余弦值.21(12分)某企业现有AB两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计AB设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,
7、每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?22(10分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所
8、成角的正弦值;()求二面角DPEB的余弦值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故正确;若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故错误;在中,而余弦函数在区间上单调递减,故 “”可得“”,由“”可得“”,故“”是“”的充要条件,故错误;若,则,所以,当且仅当时取等号,故正确;综上可得正确的有共2个;故选:B【点睛】本题考查命题的真假判
9、断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题2、C【解析】根据题意,分2步进行分析:,将4人分成3组,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案【详解】解:根据题意,分2步进行分析:,将4人分成3组,有种分法;,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题3、A【解析】作
10、出函数的图象,得到,把函数有零点转化为与在(2,4上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断【详解】作出函数的图象如图,由图可知,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,切线斜率为,k的取值范围是,函数有两个零点”是“”的充分不必要条件,故选A【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题4、A【解析】用偶函数的图象关于轴对称排除,用排除,用排
11、除.故只能选.【详解】因为 ,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.5、A【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.6、B【解析】由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂
12、直双曲线的渐近线方程为,得则离心率故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.7、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.8、B【解析】按补集、交集定义,即可求解.【详解】1,3,5
13、,6,1,2,5,6,所以1,5,6.故选:B.【点睛】本题考查集合间的运算,属于基础题.9、C【解析】设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,因为,整理得,因为,则所以.故选:C.【点睛】本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.10、B【解析】由题意知,由,知,由此能求出【详解】由题意知,解得,故选:B【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用11、D【解析】根据三视图即可求得几何体表面积,即可解得未知数.
14、【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.12、D【解析】根据y与x的线性回归方程为 y=0.85x85.71,则=0.850,y 与 x 具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加 1cm,预测其体重约增加 0.85kg,C正确;该大学某女生身高为 170cm,预测其体重约为0.8517085.71=58.79kg,D错误故选D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由正
15、弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【详解】解:由正弦定理得,则点在曲线上,设,则,又,因为,则,即的取值范围为.故答案为:.【点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.14、【解析】由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所以直线:,代入得,即,设, ,故 由定义有,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。15、【解
16、析】根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.16、【解析】在不等式两边同时取对数,然后构造函数f(x),求函数的导数,研究函数的单调性即可得到结论【详解】不等式两边同时取对数得,即x2lnx1x1lnx2,又即成立,设f(x),x(0,m),x1x2,f(x1)f(x2),则函数f(x)在(0,m)上为增函数,函数的导数,由f(x)0得1lnx0得lnx1,得0xe,即函数f(x)的最大增区间为(0,e),则m的最大值为e故答案为:e【点睛】本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数
17、,是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)分类讨论,即可得出结果;(2)先由题意,将问题转化为即可,再求出,的最小值,解不等式即可得出结果.【详解】(1)由得,若,则,显然不成立;若,则,即;若,则,即,显然成立,综上所述,的取值范围是(2)由题意知,要使得不等式恒成立,只需,当时,所以;因为,所以,解得,结合,所以的取值范围是【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记分类讨论的思想、以及绝对值不等式的性质即可,属于常考题型.18、(1), ;(2)【解析】(1)由奇函数可知 在定义域
18、上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,即恒成立,故在上为单调减函数,其中.则可转化为,
19、故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于 恒成立的问题,常转化为求 的最小值,使;对于 恒成立的问题,常转化为求 的最大值,使.19、(1);(2)【解析】(1)利用正弦定理将边化成角,可得,展开并整理可得,从而可求出角;(2)由余弦定理得,进而可得,由,可求出的值,设边上的高为,可得的面积为,从而可求出.【详解】(1)由题意,由正弦定理得.因为,所以,所以,展开得,整理得.因为,所以,故,即.(2)由余弦定理得,则,得,故,故的面积为.设边上的高为,有,故,所以
20、边上的高为.【点睛】本题考查正弦、余弦定理在解三角形中的应用,考查三角形的面积公式的应用,考查学生的计算求解能力,属于中档题.20、(1)见解析;(2)【解析】(1)由折叠过程知与平面垂直,得,再取中点,可证与平面垂直,得,从而可得线面垂直,再得线线垂直;(2)由已知得为中点,以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,由已知求出线段长,得出各点坐标,用平面的法向量计算二面角的余弦【详解】(1)易知与平面垂直,连接,取中点,连接,由得,平面,平面,又,平面,;(2)由,知是中点,令,则,由,解得,故以为原点,所在直线为轴,在平面内过作的垂线为轴建立空间直角坐标系,如图,则
21、,设平面的法向量为,则,取,则又易知平面的一个法向量为,二面角的余弦值为【点睛】本题考查证明线线垂直,考查用空间向量法求二面角证线线垂直,一般先证线面垂直,而证线面垂直又要证线线垂直,注意线线垂直、线面垂直及面面垂直的转化求空间角,常用方法就是建立空间直角坐标系,用空间向量法求空间角21、(1)30.2,29;(2)B设备【解析】(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1)A设备生产的样本的频数分布表如下质量指标值频数41640121810.根据样本质量指标平均值估计A设备生产一件产品质量
22、指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值频数2184814162根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.(2)A设备生产一件产品的利润记为X,B设备生产一件产品的利润记为Y,X240180120PY240180120P若以生产一件产品的利润作为决策依据,企业应加大B设备的生产规模.【点睛】本题考查平均数的估计值、离散随机变量的期望,并利用期望作决策,是一个概率与统计综合题,本题是一道中档题.22、()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦值.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.