《陕西省西安市重点中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《陕西省西安市重点中学2022-2023学年高三3月份第一次模拟考试数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是虚数单位,则复数( )ABC2D2等比数列若则( )A6B6C-6D3在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D42019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立
2、完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( )A小明B小红C小金D小金或小明5如图所示,正方体的棱,的中点分别为,则直线与平面所成角的正弦值为( )ABCD6已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为( )A2B5CD7下图所示
3、函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位8复数的虚部为( )ABC2D9波罗尼斯(古希腊数学家,的公元前262-190年)的著作圆锥曲线论是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地他证明过这样一个命题:平面内与两定点距离的比为常数k(k0,且k1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆现有椭圆=1(ab0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,MAB面积的最大值为8,MCD面积的最小值为1,则椭圆的离心率为()ABCD10双曲线的左右焦点为,一条渐近线方程为,过
4、点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD211双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD12在三角形中,求( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13直线是曲线的一条切线为自然对数的底数),则实数_.14正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为_15某种产品的质量指标值服从正态分布,且某用户购买了件这种产品,则这件产品中质量指标值位于区间之外的产品件数为_16一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可
5、能性相等,则取出的3个小球中数字最大的为4的概率是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点AB,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.18(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.19(12分)(1)求曲线和曲线围成图形的面积;(2)化简求值:20(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小
6、张提供了两种贷款方式.等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(
7、3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.21(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.22(10分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.2、B【解析】根据等比中项性质代入可得解,
8、由等比数列项的性质确定值即可.【详解】由等比数列中等比中项性质可知,所以,而由等比数列性质可知奇数项符号相同,所以,故选:B.【点睛】本题考查了等比数列中等比中项的简单应用,注意项的符号特征,属于基础题.3、B【解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求出的最大值;【详解】解:因为,所以因为所以,即,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.4、B【解析】将三个人制作的所有情况列举出来,再一一论证.【详解】依题意,三个人制作的所有情况如下所示:123456鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金
9、小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【点睛】本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.5、C【解析】以D为原点,DA,DC,DD1 分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1的棱长为2,则,取平面的法向量为,设直线EF与平面AA1D1D所成角为,则sin|,直线与平面所成角的正弦值为.故选C【点睛】本题考查了线面角的正弦值的
10、求法,也考查数形结合思想和向量法的应用,属于中档题6、D【解析】根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.7、D【解析】根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.8、D【解析】根据复数的除法运算
11、,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.9、D【解析】求得定点M的轨迹方程可得,解得a,b即可.【详解】设A(-a,0),B(a,0),M(x,y)动点M满足=2,则 =2,化简得.MAB面积的最大值为8,MCD面积的最小值为1, ,解得,椭圆的离心率为故选D【点睛】本题考查了椭圆离心率,动点轨迹,属于中档题10、A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,
12、意在考查学生的计算能力和转化能力.11、A【解析】根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.12、A【解析】利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据切线的斜率为,利用导数列方程
13、,由此求得切点的坐标,进而求得切线方程,通过对比系数求得的值.【详解】,则,所以切点为,故切线为,即,故.故答案为:【点睛】本小题主要考查利用导数求解曲线的切线方程有关问题,属于基础题.14、【解析】试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为考点:几何体的体积的计算15、【解析】直接计算,可得结果.【详解】由题可知:则质量指标值位于区间之外的产品件数:故答案为:【点睛】本题考查正太分布中原则,审清题意,简单计算,属基础题.16、【解析】由题,得满足题目要求的情况有,有一个数字4,另外两个数字从1,2,3里面选和有
14、两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.【详解】满足题目要求的情况可以分成2大类:有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.故答案为:【点睛】本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2),由(1)通过计算得到,即最大值为1.【详解】(
15、1)将曲线C的参数方程化为普通方程为,即;再将,代入上式,得,故曲线C的极坐标方程为,显然直线l与曲线C相交的两点中,必有一个为原点O,不妨设O与A重合,即.(2)不妨设,则面积为当,即取时,.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,三角形面积的最值问题,是一道容易题.18、(1)(2)证明见解析【解析】(1)采用零点分段法:、,由此求解出不等式的解集;(2)先根据绝对值不等式的几何意义求解出的值,然后利用基本不等式及其变形完成证明.【详解】(1)当时,不等式为,解得当时,不等式为,解得当时,不等式为,解得原不等式的解集为(2)当且仅当即时取等号,(当且仅当时取“”)同理可得,
16、(当且仅当时取“”)【点睛】本题考查绝对值不等式的解法以及利用基本不等式证明不等式,难度一般.(1)常见的绝对值不等式解法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明时,注意说明取等号的条件.19、(1)(2)【解析】(1)求曲线和曲线围成的图形面积,首先求出两曲线交点的横坐标0、1,然后求在区间上的定积分(2)首先利用二倍角公式及两角差的余弦公式计算出,然后再整体代入可得;【详解】解:(1)联立解得,所以曲线和曲线围成的图形面积(2)【点睛】本题考查定积分求曲边形的面积以及三角恒等变换的应用,属于中档题.20、(1)289200元;(2)能够获批;(3)应选择等额本金还款方
17、式【解析】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差数列的前n项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,表示数列的前项和,则,则,故小张该笔贷款的总利息为元.(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,则,所以,即,
18、因为,所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利息为:,因为,所以从经济利益的角度来考虑,小张应选择等额本金还款方式.【点睛】本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.21、(1);(2).【解析】(1)根据离心率以及,即可列方程求得,则问题得解;(2)设直线方程为,联立椭圆方程,结合韦达定理,根据题意中转化出的,即可求得参数,则三角形面积得解.【详解】(1)设,由题意可得.因为是的中位线,且,所以,即,因为进而得,所以椭圆方程为(2)由已知得两边平方整理可得.当直线斜率为时,显然不成立.直线斜率不为时,设
19、直线的方程为,联立消去,得,所以,由得将代入整理得,展开得,整理得,所以.即为所求.【点睛】本题考查由离心率求椭圆的方程,以及椭圆三角形面积的求解,属综合中档题.22、 (1)证明见解析 (2) 【解析】(1)连接交于点,由三角形中位线定理得,由此能证明平面(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值【详解】证明:证明:连接交于点,则为的中点又是的中点,连接,则因为平面,平面,所以平面(2)由,可得:,即所以又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系, 则,设平面的法向量为,则且,可解得,令,得平面的一个法向量为, 同理可得平面的一个法向量为, 则 所以二面角的余弦值为.【点睛】本题主要考查直线与平面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,属于中档题