《江西省南昌市安义中学2022-2023学年高考考前模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省南昌市安义中学2022-2023学年高考考前模拟数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示程序框图,若判断框内为“”,则输出( )A2B10C34D982记其中表示不大于x的最大整数,
2、若方程在在有7个不同的实数根,则实数k的取值范围( )ABCD3点在曲线上,过作轴垂线,设与曲线交于点,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为( )A0B1C2D34在边长为的菱形中,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为( )ABCD5已知函数,若,则等于( )A-3B-1C3D06如图,四面体中,面和面都是等腰直角三角形,且二面角的大小为,若四面体的顶点都在球上,则球的表面积为( )ABCD7已知等差数列的前项和为,若,则等差数列公差()A2BC3D48已知等比数列的前项和为,且满足,则的值是( )ABCD9已知函数
3、满足当时,且当时,;当时,且).若函数的图象上关于原点对称的点恰好有3对,则的取值范围是( )ABCD10已知平面和直线a,b,则下列命题正确的是( )A若,b,则B若,则C若,则D若,b,则11已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()ABCD12在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:;平面平面:异面直线与所成角为其中正确命题的个数为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13已知实数满足则的最大值为_.14在长方体中,为的中点,则点到平面的距离是_.15如图,直三棱柱中,P是的中点,则三棱锥的体积为_.16已知函数.若在区间上
4、恒成立.则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.18(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线 交于M,N,线段MN的中点为E.求证:;记,的面积分别为、,求证:为定值.19(12分)已知都是大于零的实数(1)证明;(2)若,证明20(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.21(12分)设
5、函数,其中()当为偶函数时,求函数的极值;()若函数在区间上有两个零点,求的取值范围22(10分)的内角的对边分别为,且(1)求角的大小(2)若,的面积,求的周长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.2、D【解析】做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数
6、形结合即可求解.【详解】作出函数的图象如图所示,由图可知 方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.3、C【解析】设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【详解】设,则,所以,依题意可得,设,则,当时,则单调递减;当时,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C
7、【点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.4、A【解析】画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,;法二:,;法三:作出的外接圆直径,则,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.5、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑
8、两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系. 6、B【解析】分别取、的中点、,连接、,利用二面角的定义转化二面角的平面角为,然后分别过点作平面的垂线与过点作平面的垂线交于点,在中计算出,再利用勾股定理计算出,即可得出球的半径,最后利用球体的表面积公式可得出答案【详解】如下图所示,分别取、的中点、,连接、,由于是以为直角等腰直角三角形,为的中点,且、分别为、的中点,所以,所以,所以二面角的平面角为,则,且,所以,是以为直角的等腰直角三角形,所以,的外心为点,同理可知,的外
9、心为点,分别过点作平面的垂线与过点作平面的垂线交于点,则点在平面内,如下图所示,由图形可知,在中,所以,所以,球的半径为,因此,球的表面积为.故选:B.【点睛】本题考查球体的表面积,考查二面角的定义,解决本题的关键在于找出球心的位置,同时考查了计算能力,属于中等题7、C【解析】根据等差数列的求和公式即可得出【详解】a1=12,S5=90,512+ d=90,解得d=1故选C【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题8、C【解析】利用先求出,然后计算出结果.【详解】根据题意,当时,,故当时,,数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前
10、项和的表达形式,只要求出数列中的项即可得到结果,较为基础.9、C【解析】先作出函数在上的部分图象,再作出关于原点对称的图象,分类利用图像列出有3个交点时满足的条件,解之即可.【详解】先作出函数在上的部分图象,再作出关于原点对称的图象,如图所示,当时,对称后的图象不可能与在的图象有3个交点;当时,要使函数关于原点对称后的图象与所作的图象有3个交点,则,解得.故选:C.【点睛】本题考查利用函数图象解决函数的交点个数问题,考查学生数形结合的思想、转化与化归的思想,是一道中档题.10、C【解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足,b,故本
11、命题不正确;B:当时,也可以满足,故本命题不正确;C:根据平行线的性质可知:当,时,能得到,故本命题是正确的;D:当时,也可以满足,b,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.11、C【解析】由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题12、B【解析】设出棱长,
12、通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应
13、用,考查空间想象能力以及逻辑推理能力二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用柯西不等式得到答案.【详解】根据柯西不等式:,故,当,即,时等号成立.故答案为:.【点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.14、【解析】利用等体积法求解点到平面的距离【详解】由题在长方体中,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.15、【解析】证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,又.平面,是的中点,.故答案为:【点睛】本题考
14、查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.16、【解析】首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【详解】解:且,即解得,即因为在区间上恒成立,解得即故答案为:【点睛】本题考查一元二次不等式及函数的综合问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)或或【解析】(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.1
15、8、(1);(2)证明见解析;证明见解析【解析】(1)解方程即可;(2)设直线,将点的坐标用表示,证明即可;分别用表示,的面积即可.【详解】(1)解之得:的标准方程为:(2), ,设直线代入椭圆方程:设,直线,直线, ,.,所以.【点睛】本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.19、(1)答案见解析(2)答案见解析【解析】(1)利用基本不等式可得,两式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【详解】(1)两式相加得(2)由(1)知于是,【点睛】本题考
16、查了基本不等式的应用,属于基础题.20、(1);(2).【解析】(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.【详解】(1)当时, 令,而是增函数,函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键
17、,属于中档题.21、()极小值,极大值;()或【解析】()根据偶函数定义列方程,解得.再求导数,根据导函数零点列表分析导函数符号变化规律,即得极值,()先分离变量,转化研究函数,利用导数研究单调性与图象,最后根据图象确定满足条件的的取值范围【详解】()由函数是偶函数,得,即对于任意实数都成立,所以. 此时,则.由,解得. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 所以有极小值,有极大值. ()由,得. 所以“在区间上有两个零点”等价于“直线与曲线,有且只有两个公共点”. 对函数求导,得. 由,解得,. 当x变化时,与的变化情况如下表所示: 00极小值极大值所以在,上单调递减,在上单调递增. 又因为,所以当或时,直线与曲线,有且只有两个公共点. 即当或时,函数在区间上有两个零点.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.22、(I);(II)【解析】试题分析:(I)由已知可得;(II)依题意得:的周长为试题解析:(I), , , , (II)依题意得:, ,的周长为考点:1、解三角形;2、三角恒等变换