江苏省扬州市邗江实验重点名校2023届中考数学最后冲刺模拟试卷含解析.doc

上传人:茅**** 文档编号:88304993 上传时间:2023-04-25 格式:DOC 页数:18 大小:529.50KB
返回 下载 相关 举报
江苏省扬州市邗江实验重点名校2023届中考数学最后冲刺模拟试卷含解析.doc_第1页
第1页 / 共18页
江苏省扬州市邗江实验重点名校2023届中考数学最后冲刺模拟试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省扬州市邗江实验重点名校2023届中考数学最后冲刺模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市邗江实验重点名校2023届中考数学最后冲刺模拟试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列说法正确的是()A3是相反数B3与3互为相反数C3与互为相反数D3与互为相反数2如图,AB是O的弦,半径OCAB 于D,若CD=2,O的半径为5,那么AB

2、的长为()A3B4C6D83如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )A4B3CD4某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A方差 B极差 C中位数 D平均数5根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( )A只有一个交点B有两个交点,且它们分别在轴两侧C有两个交点,且它们均在轴同侧D无交点6从一个边长

3、为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()ABCD7若一元二次方程x22kx+k20的一根为x1,则k的值为()A1B0C1或1D2或08我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )ABCD9如果,则a的取值范围是( )Aa0Ba0Ca0Da010某市今年1月份某一天的最高气温是3,最低气温是4,那么这一天的

4、最高气温比最低气温高A7B7C1D1二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式x2x=_12如图,点A、B、C是O上的点,且ACB40,阴影部分的面积为2,则此扇形的半径为_13在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A,则cosAOA=_14如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为_m.15如图,点 A、B、C 在O 上,O 半径为 1cm,ACB=30,则的长是_16为参加2018年“宜宾市初中毕业生升学体育考试”,小

5、聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1这组数据的中位数和众数分别是_三、解答题(共8题,共72分)17(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字放回后洗匀,再从中抽取一张卡片,记录下数字请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率18(8分)某快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本) 若每份套餐售价不超过10元,每天

6、可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份为了便于结算,每份套餐的售价(元)取整数,用(元)表示该店每天的利润若每份套餐售价不超过10元试写出与的函数关系式;若要使该店每天的利润不少于800元,则每份套餐的售价应不低于多少元?该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?若不能,请说明理由19(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的

7、销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为w元求w与x之间的函数关系式该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20(8分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆已知所有观光车每天的管理费是

8、1100元(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?21(8分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”

9、的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_22(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国

10、外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值23(12分)如图,点C、E、B、F在同一直线上,ACDF,ACDF,BCEF,求证:AB=DE24某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定ABC不动,将DEF沿线段AB向右平移(1)若A=60,斜边AB=4,设AD=x(0x4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中

11、,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确【详解】A、3和-3互为相反数,错误;B、3与-3互为相反数,正确;C、3与互为倒数,错误;D、3与-互为负倒数,错误;故选B【点睛】此题考查相反数问题,正确理解相反数的定义是解答此题的关键2、D【解析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1

12、【详解】连接OAO的半径为5,CD=2,OD=5-2=3,即OD=3;又AB是O的弦,OCAB,AD=AB;在直角三角形ODC中,根据勾股定理,得AD=4,AB=1故选D【点睛】本题考查了垂径定理、勾股定理解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度3、C【解析】设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可【详解】设I的边长为x根据题意有 解得或(舍去)故选:C【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键4、C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共

13、有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了故选C5、B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.6、C【解析】左视图就是从物体的左边往右边看小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确

14、故此题选C7、A【解析】把x1代入方程计算即可求出k的值【详解】解:把x1代入方程得:1+2k+k20,解得:k1,故选:A【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值8、A【解析】本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此列方程组即可求解【详解】设绳子长x尺,木条长y尺,依题意有故选A【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组9、C【解析】根据绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是1若|-a|=-a,则可求得a的取值范围注意1的相反数是1【详解】

15、因为|-a|1,所以-a1,那么a的取值范围是a1故选C【点睛】绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,1的绝对值是110、B【解析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可【详解】3-(-4)=3+4=7故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、x(x-1)【解析】x2x= x(x-1).故答案是:x(x-1).12、3【解析】根据圆周角定理可求出AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:AOB2ACB24080,设扇形半径为x,故阴影

16、部分的面积为x2x22,故解得:x13,x23(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.13、【解析】依据点A(1,2)在x轴上的正投影为点A,即可得到AO=1,AA=2,AO=,进而得出cosAOA的值【详解】如图所示,点A(1,2)在x轴上的正投影为点A,AO=1,AA=2,AO=,cosAOA=,故答案为:【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律14、3【解析】试题分析:如图,CDABMN,ABECDE,A

17、BFMNF,即,解得:AB=3m,答:路灯的高为3m考点:中心投影15、.【解析】根据圆周角定理可得出AOB=60,再根据弧长公式的计算即可【详解】ACB=30,AOB=60,OA=1cm,的长=cm.故答案为:【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=16、2.40,2.1【解析】把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1它们的中位数为2.40,众数为2.1故答案为2.40,2.1点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有

18、偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.三、解答题(共8题,共72分)17、见解析,.【解析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率18、(1)y=400

19、x1(5x10);9元或10元;(2)能, 11元.【解析】(1)、根据利润=(售价进价)数量固定支出列出函数表达式;(2)、根据题意得出不等式,从而得出答案;(2)、根据题意得出函数关系式,然后将y=1560代入函数解析式,从而求出x的值得出答案【详解】解:(1)y=400(x5)2(5x10), 依题意得:400(x5)2800, 解得:x8.5,5x10,且每份套餐的售价x(元)取整数, 每份套餐的售价应不低于9元 (2)依题意可知:每份套餐售价提高到10元以上时,y=(x5)40040(x10)2, 当y=1560时, (x5)40040(x10)2=1560,解得:x1=11,x2=

20、14,为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意故该套餐售价应定为11元【点睛】本题主要考查的是一次函数和二次函数的实际应用问题,属于中等难度的题型理解题意,列出关系式是解决这个问题的关键19、 (1);(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元【解析】(1)根据销售额=销售量销售价单x,列出函数关系式(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值【详解】解:(1

21、)由题意得:,w与x的函数关系式为:(2),20,当x=30时,w有最大值w最大值为2答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元(3)当w=150时,可得方程2(x30)2+2=150,解得x1=25,x2=3328,x2=3不符合题意,应舍去答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元20、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函

22、数最大值,比较得出函数的最大值试题解析:(1)由题意知,若观光车能全部租出,则0x100,由50x11000,解得x22,又x是5的倍数,每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0x100时,y1=50x1100,y1随x的增大而增大,当x=100时,y1的最大值为501001100=3900;当x100时,y2=(50)x1100=x2+70x1100=(x175)2+5025,当x=175时,y2的最大值为5025,50253900,故当每辆车的日租金为175元时,每天的净收入最多是5025元考点:二次函数的应用21、(1)20;当弦AB的位置改变时,点P关于O的“幂

23、值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB

24、和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=22=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,

25、点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题

26、综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键22、(1)y1=t(t30)(0t30);(2)y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件【解析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0t20、t=20和20t30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值

27、,从而得出整体的最值【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t0)(t30) 再代入t=5,y1=25可得a=y1=t(t30)(0t30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0t20时,y2=2t,当20t30时,y2=4t+120,y2=,(3)当0t20时,y=y1+y2=t(t30)+2t=80(t20)2 , 可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20t30时,y=y1+y2=t(t30)4t+120=125(t5)2 , 可知抛物线开口向下,t的取值范围在对

28、称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件23、证明见解析【解析】证明:AC/DF 在和中 ABCDEF(SAS)24、(1)y=(0x4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形【解析】分析:(1)根据平移的性质得到DFAC,所以由平行线的性质、勾股定理求得GD=,BG=,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角

29、三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解:(1)如图(1)DFAC,DGB=C=90,GDB=A=60,GBD=30BD=4x,GD=,BG=y=SBDG=(0x4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形ACB=DFE=90,D是AB的中点CD=AB,BF=DE,CD=BD=BF=BE,CF=BD,CD=BD=BF=CF,四边形CDBF是菱形;AC=BC,D是AB的中点CDAB即CDB=90四边形CDBF为菱形,四边形CDBF是正方形点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁