《江苏省徐州市区部分2023年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省徐州市区部分2023年中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BEEDDC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s若P,Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2)已知y与t的函数
2、图象如图2,则下列结论错误的是( )AAE=6cmBC当0t10时,D当t=12s时,PBQ是等腰三角形2某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.83如图,二次函数yax2bxc(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OAOC则下列结论:abc0;acb10;OAOB.其中正确结论的个数是( )A4B3C2D14根据天津市北大港湿地自然保护总体规划(20172025),2
3、018年将建立养殖业退出补偿机制,生态补水78000000m1将78000000用科学记数法表示应为()A780105 B78106 C7.8107 D0.781085已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A11B16C17D16或176如图,将含60角的直角三角板ABC绕顶点A顺时针旋转45度后得到ABC,点B经过的路径为弧BB,若BAC=60,AC=1,则图中阴影部分的面积是( )ABCD7下列运算正确的是()Aa2+a3=a5B(a3)2a6=1Ca2a3=a6D(+)2=58据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有19
4、0家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为A元B元C元D元9函数y=的自变量x的取值范围是( )Ax2Bx2Cx2Dx210一个几何体的三视图如图所示,这个几何体是( )A三菱柱B三棱锥C长方体D圆柱体二、填空题(共7小题,每小题3分,满分21分)11若点与点关于原点对称,则_125月份,甲、乙两个工厂用水量共为200吨进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题
5、意列关于x,y的方程组为_13两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有_千米.14已知矩形ABCD,ADAB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_.15如图,正比例函数y=kx(k0)与反比例函数y=的图象相交于A
6、、C两点,过点A 作x轴的垂线交x轴于点B,连结BC,则ABC的面积等于_16分解因式:x2yy_172018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_. 三、解答题(共7小题,满分69分)18(10分)在RtABC中,ACB90,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F(1)求证:AC是O的切线;(2)若BF6,O的半径为5,求CE的长19(5分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图
7、,请你结合图中所给信息解答下列问题:(说明:A级:90分100分;B级:75分89分;C级:60分74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为 ,C级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?20(8分)如图,内接于,的延长线交于点.(1)求证:平分;(2)若,求和的长.21(10分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,
8、B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)22(10分)如图,在RtABC中,过点C的直线MNAB,D为AB边上一点,过点D作DEBC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BEC
9、D是什么特殊四边形?说明理由;若D为AB中点,则当=_时,四边形BECD是正方形.23(12分)如图,在平行四边形ABCD中,BD是对角线,ADB=90,E、F分别为边AB、CD的中点(1)求证:四边形DEBF是菱形;(2)若BE=4,DEB=120,点M为BF的中点,当点P在BD边上运动时,则PF+PM的最小值为 ,并在图上标出此时点P的位置24(14分)已知,四边形ABCD中,E是对角线AC上一点,DEEC,以AE为直径的O与边CD相切于点D,点B在O上,连接OB求证:DEOE;若CDAB,求证:BC是O的切线;在(2)的条件下,求证:四边形ABCD是菱形参考答案一、选择题(每小题只有一个
10、正确答案,每小题3分,满分30分)1、D【解析】(1)结论A正确,理由如下:解析函数图象可知,BC=10cm,ED=4cm,故AE=ADED=BCED=104=6cm(2)结论B正确,理由如下:如图,连接EC,过点E作EFBC于点F,由函数图象可知,BC=BE=10cm,EF=1(3)结论C正确,理由如下:如图,过点P作PGBQ于点G,BQ=BP=t,(4)结论D错误,理由如下:当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如图,连接NB,NC此时AN=1,ND=2,由勾股定理求得:NB=,NC=BC=10,BCN不是等腰三角形,即此时PBQ不是等腰三角形故选D2、C【解析】试
11、题解析:这组数据中4出现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C3、B【解析】试题分析:由抛物线开口方向得a0,由抛物线的对称轴位置可得b0,由抛物线与y轴的交点位置可得c0,则可对进行判断;根据抛物线与x轴的交点个数得到b24ac0,加上a0,则可对进行判断;利用OA=OC可得到A(c,0),再把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,两边除以c则可对进行判断;设A(x1,0),B(x2,0),则OA=x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a0)的两根,利用根与系数
12、的关系得到x1x2=,于是OAOB=,则可对进行判断解:抛物线开口向下,a0,抛物线的对称轴在y轴的右侧,b0,抛物线与y轴的交点在x轴上方,c0,abc0,所以正确;抛物线与x轴有2个交点,=b24ac0,而a0,0,所以错误;C(0,c),OA=OC,A(c,0),把A(c,0)代入y=ax2+bx+c得ac2bc+c=0,acb+1=0,所以正确;设A(x1,0),B(x2,0),二次函数y=ax2+bx+c(a0)的图象与x轴交于A,B两点,x1和x2是方程ax2+bx+c=0(a0)的两根,x1x2=,OAOB=,所以正确故选B考点:二次函数图象与系数的关系4、C【解析】科学记数法记
13、数时,主要是准确把握标准形式a10n即可.【详解】解:78000000= 7.8107.故选C.【点睛】科学记数法的形式是a10n,其中1a10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.5、D【解析】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D正确.考点:三角形三边关系;分情况讨论的数学思想6、A【解析】试题解析:如图,在RtABC中,ACB=90,BAC=60,AC=1,BC=ACtan60=1=,
14、AB=2SABC=ACBC=根据旋转的性质知ABCABC,则SABC=SABC,AB=ABS阴影=S扇形ABB+SABC-SABC=故选A考点:1.扇形面积的计算;2.旋转的性质7、B【解析】利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断【详解】解:A、a2与a3不能合并,所以A选项错误;B、原式=a6a6=1,所以A选项正确;C、原式=a5,所以C选项错误;D、原式=2+2+3=5+2,所以D选项错误故选:B【点睛】本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根
15、式,然后进行二次根式的乘除运算,再合并即可解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】亿=115956000000,所以亿用科学记数法表示为1.159561011,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、D【解析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:函数y=有意义,x-20,即x
16、2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.10、A【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱故选:B【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查二、填空题(共7小题,每小题3分,满分21分)11、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为112、 【解析】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,
17、根据甲、乙两厂5月份用水量与6月份用水量列出关于x、y的方程组即可.【详解】甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:,故答案为:【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系是解题的关键.13、90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度
18、即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,452=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.14、8【解析】根据题意作出图形即可得出答案,【详解】如图,ADAB,CDE1,ABE2,ABE3,BCE4,CDE5,ABE6,ADE7,CDE8,为等腰三角形,故有8个满足
19、题意得点.【点睛】此题主要考查矩形的对称性,解题的关键是根据题意作出图形.15、1【解析】根据反比例函数的性质可判断点A与点B关于原点对称,则SBOC=SAOC,再利用反比例函数k的几何意义得到SAOC=3,则易得SABC=1【详解】双曲线y=与正比例函数y=kx的图象交于A,B两点,点A与点B关于原点对称,SBOC=SAOC,SAOC=1=3,SABC=2SAOC=1故答案为116、y(x+1)(x1)【解析】观察原式x2yy,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)
20、【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止17、【解析】【分析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:61,故答案为:61【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)CE=1【解析】(1)根据等角对
21、等边得OBE=OEB,由角平分线的定义可得OBE=EBC,从而可得OEB=EBC,根据内错角相等,两直线平行可得OEBC,根据两直线平行,同位角相等可得OEA=90,从而可证AC是O的切线.(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在RtOBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,OB=OE,OBE=OEB, BE平分ABCOBE=EBC,OEB=EBC,OEBC, ACB=90 ,OEA=ACB=90, AC是O的切线 .(2)解:过O作OHBF,BH=BF=
22、3,四边形OHCE是矩形,CE=OH,在RtOBH中,BH=3,OB=5,OH=1,CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性19、(1)4%;(2)72;(3)380人【解析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数总人数360,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设
23、计合格的等级,使大多数人能合格【详解】解:(1)九年级(1)班学生人数为1326%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为1050360=72,故答案为72;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+2550)1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一)20、 (1)证明见解析;(2)AC , CD ,【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO
24、BC,再由等腰三角形的性质即可得出结论;(2)延长CD交O于E,连接BE,则CE是O的直径,由圆周角定理得出EBC=90,E=BAC,得出sinE=sinBAC,求出CE=BC=10,由勾股定理求出BE=8,证出BEOA,得出,求出OD=,得出CD=,而BEOA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在RtACH中,由勾股定理求出AC的长即可本题解析:解:(1)证明:延长AO交BC于H,连接BO.ABAC,OBOC,A,O在线段BC的垂直平分线上AOBC.又ABAC,AO平分BAC.(2)延长CD交O于E,连接BE,则CE是O的直径EBC90,BCBE.EBAC,sinEsin
25、BAC.CEBC10.BE8,OAOECE5.AHBC,BEOA.,即,解得OD.CD5.BEOA,即BEOH,OCOE,OH是CEB的中位线OHBE4,CHBC3.AH549.在RtACH中,AC3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出EBC=90,E=BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度21、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高
26、中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446;(4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人
27、数=50(4-60%-44%)=508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图22、(1)详见解析;(2)菱形;(3)当A=45,四边形BECD是正方形【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出CDB=90,再根据正方形的判定推出即可【详解】(1)DEBC,DFP=90,ACB=90,DFB=ACB,DE/
28、AC,MN/AB,四边形ADEC为平行四边形,CE=AD;(2)菱形,理由如下:在直角三角形ABC中,D为AB中点,BD=AD,CE=AD,BD=CE,MN/AB,BECD是平行四边形,ACB=90,D是AB中点,BD=CD,(斜边中线等于斜边一半)四边形BECD是菱形;(3)若D为AB中点,则当A=45时,四边形BECD是正方形,理由:A=45,ACB=90,ABC=45,四边形BECD是菱形,DC=DB,DBC=DCB=45,CDB=90,四边形BECD是菱形,四边形BECD是正方形,故答案为45.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质
29、等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.23、(1)详见解析;(2).【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明BEF是等边三角形,利用三角函数求解【详解】(1)平行四边形ABCD中,ADBC,DBC=ADB=90ABD中,ADB=90,E时AB的中点,DE=AB=AE=BE同理,BF=DF平行四边形ABCD中,AB=CD,DE=BE=BF=DF,四边形DEBF是菱形;(2)连接BF菱形DEBF中,DEB=120,EFB=60,
30、BEF是等边三角形M是BF的中点,EMBF则EM=BEsin60=4=2即PF+PM的最小值是2故答案为:2【点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键24、(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)先判断出2+390,再判断出12即可得出结论;(2)根据等腰三角形的性质得到3CODDEO60,根据平行线的性质得到41,根据全等三角形的性质得到CBOCDO90,于是得到结论;(3)先判断出ABOCDE得出ABCD,即可判断出四边形ABCD是平行四边形,最后判断出CDAD即可【详解】(1)如图,连接OD,C
31、D是O的切线,ODCD,2+31+COD90,DEEC,12,3COD,DEOE;(2)ODOE,ODDEOE,3CODDEO60,2130,ABCD,41,124OBA30,BOCDOC60,在CDO与CBO中,CDOCBO(SAS),CBOCDO90,OBBC,BC是O的切线;(3)OAOBOE,OEDEEC,OAOBDEEC,ABCD,41,124OBA30,ABOCDE(AAS),ABCD,四边形ABCD是平行四边形,DAEDOE30,1DAE,CDAD,ABCD是菱形【点睛】此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出ABOCDE是解本题的关键