江苏省南京市重点中学2023届高三第二次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:88304629 上传时间:2023-04-25 格式:DOC 页数:20 大小:2.19MB
返回 下载 相关 举报
江苏省南京市重点中学2023届高三第二次模拟考试数学试卷含解析.doc_第1页
第1页 / 共20页
江苏省南京市重点中学2023届高三第二次模拟考试数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江苏省南京市重点中学2023届高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市重点中学2023届高三第二次模拟考试数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,为上异于,的任一点,为的中点,若,则等于( )ABCD2已知函数是定义在上的奇函数,函数满足,且时,则( )A2BC1D3阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD4ABCD5如图,在直三棱柱中,点分别是线段的中点,分别记二面角,的平面角为,则下列结论正确的是( )ABCD6如图,圆是边长为的等边三角形的内切圆,其与边相切于点,点为圆上任意一点,则的最大值为( )ABC2D7复数(为虚数单位),则等于( )A3BC2D8在平面直角坐标系中,已知点,若动点满

3、足 ,则的取值范围是( )ABCD9已知,则的值构成的集合是( )ABCD10如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( ) A2019年12月份,全国居民消费价格环比持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年1

4、2月的全国居民消费价格11已知变量,满足不等式组,则的最小值为( )ABCD12某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD二、填空题:本题共4小题,每小题5分,共20分。13若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为_.14函数在区间(-,1)上递增,则实数a的取值范围是_15已知关于x的不等式(axa24)(x4)0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_16已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知

5、曲线的参数方程为为参数, 曲线的参数方程为为参数).(1)求与的普通方程;(2)若与相交于,两点,且,求的值.18(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值19(12分)2018年反映社会现实的电影我不是药神引起了很大的轰动,治疗特种病的创新药研发成了当务之急为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:研发费用(百万元)2361013151821销量(万盒)1122.53.53.54.56(1)求与的相关系数精确到0.01,并判断与的关系是否可用线性回归方程模型拟合

6、?(规定:时,可用线性回归方程模型拟合);(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测第一次检测时,三类剂型,合格的概率分别为,第二次检测时,三类剂型,合格的概率分别为,两次检测过程相互独立,设经过两次检测后,三类剂型合格的种类数为,求的数学期望附:(1)相关系数(2),20(12分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围21(12分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.22(10分)如

7、图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.2、D【解析】说明函数是周期函数,由周期性把自变量的值变小,再结合奇偶性计算函数值【详解】由知函数的周期为4,又是奇函数,又,故选:D【点睛】本题考查函数

8、的奇偶性与周期性,掌握周期性与奇偶性的概念是解题基础3、D【解析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.4、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题5、D【解析】过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法求解二面角的余弦值得答案【详解】解:因

9、为,所以,即过点作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,0,0,1,设平面的法向量, 则,取,得,同理可求平面的法向量,平面的法向量,平面的法向量,故选:D【点睛】本题考查二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题6、C【解析】建立坐标系,写出相应的点坐标,得到的表达式,进而得到最大值.【详解】以D点为原点,BC所在直线为x轴,AD所在直线为y轴,建立坐标系,设内切圆的半径为1,以(0,1)为圆心,1为半径的圆;根据三角形面积公式得到,可得到内切圆的半径为 可得到点的坐标为: 故得到 故得到 , 故最大值为:2.故答案为C

10、.【点睛】这个题目考查了向量标化的应用,以及参数方程的应用,以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法.7、D【解析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.8、D【解析】设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设 ,则, 为点的轨迹方程点的

11、参数方程为(为参数) 则由向量的坐标表达式有:又故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:直接法;定义法;相关点法;参数法;待定系数法9、C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.10、D【解析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年1

12、2月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.11、B【解析】先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.12、D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,

13、所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意利用函数的图象变换规律,三角函数的图像的对称性,求得的最小值.【详解】解:将函数的图象沿轴向右平移个单位长度,可得的图象.根据图象与的图象关于轴对称,可得,即时,的最小值为.故答案为:.【点睛】本题主要考查函数的图象变换规律,正弦函数图像的对称性,属于基础题.14、【解析】根据复合函数单调性同增异减,结合二次函数的性质、对数型函数的定义域列不等式组,解不等式求得的取值范围.【详解】由二次函数的性质和复合函数的单调性可得解得

14、.故答案为:【点睛】本小题主要考查根据对数型复合函数的单调性求参数的取值范围,属于基础题.15、-1【解析】讨论三种情况,a0时,根据均值不等式得到a(a)14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(axa14)(x4)0,a0时,x(a)(x4)0,其中a0,故解集为(a,4),由于a(a)14,当且仅当a,即a1时取等号,a的最大值为4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为1;a0时,4(x4)0,解集为(,4),整数解有无穷多,故a0不符合条件; a0时,x(a)(x4)0,其中a4,故解集为(,4)(a,+),整数解有无穷多,故a0不符合条件;综上所

15、述,a1故答案为:1【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.16、【解析】由图可知,当直线ykx在直线OA与x轴(不含它们)之间时,ykx与yf(x)的图像有两个不同交点,即方程有两个不相同的实根三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)0【解析】(1)分别把两曲线参数方程中的参数消去,即可得到普通方程;(2)把直线的参数方程代入的普通方程,化为关于的一元二次方程,再由根与系数的关系及此时的几何意义求解【详解】(1)由曲线的参数方程为为参数),消去参数,可得;由曲线的参数方程为为参数),消去参数,可得,即(2)把为参

16、数)代入,得,解得:,即,满足【点睛】本题考查参数方程化普通方程,特别是直线参数方程中参数的几何意义的应用,是中档题18、见解析【解析】(1)如图,连接,交于点,连接,则为的中点,因为为的中点,所以,又,所以,从而,四点共面因为平面,平面,平面平面,所以又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,所以,互相垂直,分别以,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为1

17、9、(1)0.98;可用线性回归模型拟合(2)【解析】(1)根据题目提供的数据求出,代入相关系数公式求出,根据的大小来确定结果;(2)求出药品的每类剂型经过两次检测后合格的概率,发现它们相同,那么经过两次检测后,三类剂型合格的种类数为,服从二项分布,利用二项分布的期望公式求解即可.【详解】解:(1)由题意可知,由公式,与的关系可用线性回归模型拟合;(2)药品的每类剂型经过两次检测后合格的概率分别为,由题意, ,.【点睛】本题考查相关系数的求解,考查二项分布的期望,是中档题.20、(1)增区间为,减区间为;(2).【解析】(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数

18、,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围【详解】(1)当时,则,当时,则,此时,函数为减函数;当时,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(2),则,.当时,即当时,由,得,此时,函数为增函数;由,得,此时,函数为减函数.则,不合乎题意;当时,即时,.不妨设,其中,令,则或.(i)当时,当时,此时,函数为增函数;当时,此时,函数为减函数;当时,此时,函数为增函数.此时,而,构造函数,则,所以,函数在区间上单调递增,则,即当时,所以,.,符合题意;当时,函数在上为增函数,符合题意;当时,同理可得函数在上单调递增,在上单调递减

19、,在上单调递增,此时,则,解得.综上所述,实数的取值范围是.【点睛】本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,正确求导和分类讨论是关键,属于难题.21、(1)(2)直线过定点【解析】设.(1)由题意知,.设直线的方程为,由得,则,由根与系数的关系可得,所以.由,得,解得.所以抛物线的方程为.(2)设直线的方程为,由得,由根与系数的关系可得, 所以,解得.所以直线的方程为,所以时,直线过定点.22、(1)证明见解析;(2).【解析】(1)利用线面平行的定义证明即可(2)取的中点,并分别连接,然后,证明相应的线面垂直关系,分别以,为轴,轴,轴建立空间直角坐标系,利用坐标运算进行求解即可【详解】证明:(1)在图1中,连接.又,分别为,中点,所以.即图2中有.又平面,平面,所以平面.解:(2)在图2中,取的中点,并分别连接,.分析知,.又平面平面,平面平面,平面,所以平面.又,所以,.分别以,为轴,轴,轴建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量,则,取,则,所以.又,所以.分析知,直线与平面所成角的正弦值为.【点睛】本题考查线面平行的证明以及利用空间向量求解线面角问题,属于基础题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁