《江苏省徐州市2023届高三第二次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省徐州市2023届高三第二次模拟考试数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D22如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不
2、变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变3已知实数,满足约束条件,则目标函数的最小值为ABCD4四人并排坐在连号的四个座位上,其中与不相邻的所有不同的坐法种数是( )A12B16C20D85已知,由程序框图输出的为( )A1B0CD6已知函数()的最小值为0,则( )ABCD7二项式展开式中,项的系数为( )ABCD8已知函数,关于的方程R)有四个相异的实数根,则的取值范围是()ABCD9已知数列中,(),则等于( )ABCD210已
3、知是过抛物线焦点的弦,是原点,则( )A2B4C3D311函数在上单调递减的充要条件是( )ABCD12如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知单位向量的夹角为,则=_.14从4名男生和3名女生中选出4名去参加一项活动,要求男生中的甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为_.(用数字作答)15已知函数.若在区间上恒成立.则实数的取值范围是_16己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是_.三、解答题:
4、共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在锐角中,分别是角,所对的边,的面积,且满足,则的取值范围是( )ABCD18(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值19(12分)在ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求ABC的面积20(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.21(12分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.22(10分)已知函数(I)若讨论的单调性;()若,且对于函数的图象上两点
5、,存在,使得函数的图象在处的切线.求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.2、A【解析】由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,又,又,为了得到这个函数的图象,只需将的图象上的
6、所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.3、B【解析】作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时故选B【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键4、A【解析】先将除A,B以外的两人先排,再将A,B在3个空位置里进行插空,再相乘得答案.【
7、详解】先将除A,B以外的两人先排,有种;再将A,B在3个空位置里进行插空,有种,所以共有种.故选:A【点睛】本题考查排列中不相邻问题,常用插空法,属于基础题.5、D【解析】试题分析:,所以,所以由程序框图输出的为.故选D考点:1、程序框图;2、定积分6、C【解析】设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.7、D【解析】写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D
8、【点睛】本题主要考查了二项式定理的运算,属于基础题.8、A【解析】=,当时时,单调递减,时,单调递增,且当,当,当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,即.9、A【解析】分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:,(),数列是以3为周期的周期数列,故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.10、D【解析】设,设:,联立方程得到,计算得到答案.【详解】设,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键
9、 .11、C【解析】先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,令,则,故在上恒成立;结合图象可知,解得故.故选:C.【点睛】本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.12、A【解析】设球心为,三棱柱的上底面的内切圆的圆心为,该圆与边切于点,根据球的几何性质可得为直角三角形,然后根据题中数据求出圆半径,进而求得球的
10、半径,最后可求出球的体积【详解】如图,设三棱柱为,且,高所以底面为斜边是的直角三角形,设该三角形的内切圆为圆,圆与边切于点,则圆的半径为设球心为,则由球的几何知识得为直角三角形,且,所以,即球的半径为,所以球的体积为故选A【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径、球心到小圆圆心的距离和小圆半径为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法(2)若直角三角形的两直角边为,斜边为,则该直角三角形内切圆的半径,合理利用中间结论可提高解题的效率二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为单位向量的夹角为,
11、所以,所以=.14、1【解析】由排列组合及分类讨论思想分别讨论:设甲参加,乙不参加,设乙参加,甲不参加,设甲,乙都不参加,可得不同的选法种数为9+9+51,得解【详解】设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为5,综合得:不同的选法种数为9+9+51,故答案为:1【点睛】本题考查了排列组合及分类讨论思想,准确分类及计算是关键,属中档题15、【解析】首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.【详解】解:
12、且,即解得,即因为在区间上恒成立,解得即故答案为:【点睛】本题考查一元二次不等式及函数的综合问题,属于基础题.16、【解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、A【解析】由正弦定理化简得,解得,进而得到,利用正
13、切的倍角公式求得,根据三角形的面积公式,求得,进而化简,即可求解.【详解】由题意,在锐角中,满足,由正弦定理可得,即,可得,所以,即,所以,所以,则,所以,可得,又由的面积,所以,则.故选:A.【点睛】本题主要考查了正弦定理、余弦定理的应用,以及三角形的面积公式和正切的倍角公式的综合应用,着重考查了推理与运算能力,属于中档试题.18、(1)(2)【解析】分析:(1)利用正弦定理以及诱导公式与和角公式,结合特殊角的三角函数值,求得角C;(2)运用向量的平方就是向量模的平方,以及向量数量积的定义,结合基本不等式,求得的最大值,再由三角形的面积公式计算即可得到所求的值.详解:(1), ()取中点,则
14、,在中,(注:也可将两边平方)即, ,所以,当且仅当时取等号 此时,其最大值为.点睛:该题考查的是有关三角形的问题,涉及到的知识点有正弦定理,诱导公式,和角公式,向量的平方即为向量模的平方,基本不等式,三角形的面积公式,在解题的过程中,需要正确使用相关的公式进行运算即可求得结果.19、(1); (2).【解析】(1)整理得:,再由余弦定理可得,问题得解(2)由正弦定理得:,再代入即可得解【详解】(1)由题意,得,;(2)由正弦定理,得,,.【点睛】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题20、(1)(2)【解析】(1)将表示为分段函数的形式,由此求得不等
15、式的解集.(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.,.【点睛】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.21、(1)证明见解析;(2).【解析】(1)把转化成,令,由题意得,即证明恒成立,通过导数求证即可(2)直接求导可得,令,得或,故根据0与的大小关系来进行分类讨论即可【详解】证明:(1)令,则.分析知,函数的增区间为,减区间为.所以当时,.所以,即,所以.所以当时,.
16、解:(2)因为,所以.讨论:当时,此时函数在区间上单调递减.又,故此时函数仅有一个零点为0;当时,令,得,故函数的增区间为,减区间为,.又极大值,所以极小值.当时,有.又,此时,故当时,函数还有一个零点,不符合题意;当时,令得,故函数的增区间为,减区间为,.又极小值,所以极大值.若,则,得,所以,所以当且时,故此时函数还有一个零点,不符合题意.综上,所求实数的值为.【点睛】本题考查不等式的恒成立问题和函数的零点问题,本题的难点在于把导数化成因式分解的形式,如,进而分类讨论,本题属于难题22、 (1)见解析(2)见证明【解析】(1)对函数求导,分别讨论,以及,即可得出结果;(2)根据题意,由导数
17、几何意义得到,将证明转化为证明即可,再令,设 ,用导数方法判断出的单调性,进而可得出结论成立.【详解】(1)解:易得,函数的定义域为,令,得或.当时,时,函数单调递减;时,函数单调递增.此时,的减区间为,增区间为.当时,时,函数单调递减;或时,函数单调递增.此时,的减区间为,增区间为,.当时,时,函数单调递增;此时,的减区间为. 综上,当时,的减区间为,增区间为:当时,的减区间为,增区间为.;当时,增区间为.(2)证明:由题意及导数的几何意义,得由(1)中得.易知,导函数 在上为增函数,所以,要证,只要证,即,即证.因为,不妨令,则 .所以 ,所以在上为增函数,所以,即,所以,即,即.故有(得证).【点睛】本题主要考查导数的应用,通常需要对函数求导,利用导数的方法研究函数的单调性以及函数极值等即可,属于常考题型.