《江苏省扬大附中2023届高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬大附中2023届高三第二次诊断性检测数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则的值为( )ABCD2已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD3双曲线的离心率为,则其渐近线方程为ABCD4已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )ABCD5若实数、满足,则的最小值是( )ABCD6已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为( )ABCD7函数的大致图象为( )ABCD8已知函数,若
3、,则的值等于( )ABCD9已知椭圆的左、右焦点分别为、,过点的直线与椭圆交于、两点.若的内切圆与线段在其中点处相切,与相切于点,则椭圆的离心率为( )ABCD10已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( )与点距离为的点形成一条曲线,则该曲线的长度是;若面,则与面所成角的正切值取值范围是;若,则在该四棱柱六个面上的正投影长度之和的最大值为.ABCD11在复平面内,复数(为虚数单位)对应的点位于( )A第一象限B第二象限C第三象限D第四象限12在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面
4、平面,则下列结论中不成立的是( )A平面BC当时,平面D当m变化时,直线l的位置不变二、填空题:本题共4小题,每小题5分,共20分。13(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是_14正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为_15若,且,则的最小值是_.16已知数列的各项均为正数,记为数列的前项和,若,则_.三、解答
5、题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆:过点,过坐标原点作两条互相垂直的射线与椭圆分别交于,两点.(1)证明:当取得最小值时,椭圆的离心率为.(2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.18(12分)以直角坐标系的原点为极点,轴的非负半轴为极轴,且两坐标系取相同的长度单位.已知曲线的参数方程:(为参数),直线的极坐标方程:(1)求曲线的极坐标方程;(2)若直线与曲线交于、两点,求的最大值.19(12分)设函数,.(1)求函数的单调区间;(2)若函数有两个零点,().(i)求的取值范围;(ii)求证:随着的增
6、大而增大.20(12分)在直角坐标系中,曲线的参数方程为(为参数),为上的动点,点满足,点的轨迹为曲线.()求的方程;()在以为极点,轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为,与的异于极点的交点为,求.21(12分)已知分别是的内角的对边,且()求()若,求的面积()在()的条件下,求的值22(10分)正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列bn的前n项和为Tn,证明:对于任意的nN*,都有Tn .参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用倍角公式求得的值,利用诱导
7、公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.2、B【解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力
8、,属于中档题3、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.4、C【解析】根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.【详解】将函数的图象向左平移个单位长度可得函数的图象,由于函数的图象关于直线对称,则函数的图象关于轴对称,即函数为偶函数,由,得,函数在区间上单调递增,则,得,解得.因此,实数的取值范围是.故选:C.【点睛】本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于
9、中等题.5、D【解析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题6、C【解析】根据等差数列的性质设出,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,成等差数列,设,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,
10、由勾股定理,离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.7、A【解析】利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,.故选:A【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.8、B【解析】由函数的奇偶性可得,【详解】其中为奇函数,也为奇函数也为奇函数故选:B【点睛】函数奇偶性的运用即得结果,小记,定义域关于原点对称时有:奇函数奇函数=奇函数;奇函数奇函数=偶函数;奇函数奇函数=偶函数;偶函数偶函数=偶函数;偶函数偶函数=偶函数
11、;奇函数偶函数=奇函数;奇函数偶函数=奇函数9、D【解析】可设的内切圆的圆心为,设,可得,由切线的性质:切线长相等推得,解得、,并设,求得的值,推得为等边三角形,由焦距为三角形的高,结合离心率公式可得所求值【详解】可设的内切圆的圆心为,为切点,且为中点,设,则,且有,解得,设,设圆切于点,则,由,解得,所以为等边三角形,所以,解得.因此,该椭圆的离心率为.故选:D.【点睛】本题考查椭圆的定义和性质,注意运用三角形的内心性质和等边三角形的性质,切线的性质,考查化简运算能力,属于中档题10、C【解析】与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;当在(或时,与面所成角(或的正切
12、值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;设,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和【详解】如图:错误, 因为 ,与点距离为的点形成以为圆心,半径为的圆弧,长度为; 正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是;正确,设,则,即,在前后、左右、上下面上的正投影长分别为,所以六个面上的正投影长度之,当且仅当在时取等号.故选:.【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强
13、,属于难题11、C【解析】化简复数为、的形式,可以确定对应的点位于的象限【详解】解:复数故复数对应的坐标为位于第三象限故选:【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题12、C【解析】根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由这五
14、位同学答对的题数分别是,得该组数据的平均数,则方差14、【解析】试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为考点:几何体的体积的计算15、8【解析】利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即 取等号),所以最小值为.【点睛】已知,求解( )的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.16、63【解析】对进行化简,可得,再根据等比数列前项和公式进行求解即可【详解】由数列为首项为,公比的等比数列,所以63【点睛】本题考查等比数列基本量的求法,当处理复杂因式时,常用
15、基本方法为:因式分解,约分。但解题本质还是围绕等差和等比的基本性质三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)存在,【解析】(1)将点代入椭圆方程得到,结合基本不等式,求得取得最小值时,进而证得椭圆的离心率为.(2)当直线的斜率不存在时,根据椭圆的对称性,求得到直线的距离.当直线的斜率存在时,联立直线的方程和椭圆方程,写出韦达定理,利用,则列方程,求得的关系式,进而求得到直线的距离.根据上述分析判断出所求的圆存在,进而求得定圆的方程.【详解】(1)证明:椭圆经过点,当且仅当,即时,等号成立,此时椭圆的离心率.(2)解:椭圆的焦距为2,又,.当直线
16、的斜率不存在时,由对称性,设,.,在椭圆上,到直线的距离.当直线的斜率存在时,设的方程为.由,得,.设,则,.,即,到直线的距离.综上,到直线的距离为定值,且定值为,故存在定圆:,使得圆与直线总相切.【点睛】本小题主要考查点和椭圆的位置关系,考查基本不等式求最值,考查直线和椭圆的位置关系,考查点到直线的距离公式,考查分类讨论的数学思想方法,考查运算求解能力,属于中档题.18、(1);(2)10【解析】(1)消去参数,可得曲线C的普通方程,再根据极坐标与直角坐标的互化公式,代入即可求得曲线C的极坐标方程;(2)将代入曲线C的极坐标方程,利用根与系数的关系,求得,进而得到=,结合三角函数的性质,即
17、可求解.【详解】(1)由题意,曲线C的参数方程为,消去参数,可得曲线C的普通方程为,即,又由,代入可得曲线C的极坐标方程为.(2)将代入,得,即,所以=,其中,当时,取最大值,最大值为10.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化,以及曲线的极坐标方程的应用,着重考查了运算与求解能力,属于中档试题.19、(1)见解析;(2)(i)(ii)证明见解析【解析】(1)求出导函数,分类讨论即可求解;(2)(i)结合(1)的单调性分析函数有两个零点求解参数取值范围;(ii)设,通过转化,讨论函数的单调性得证.【详解】(1)因为,所以当时,在上恒成立,所以在上单调递增,当时
18、,的解集为,的解集为,所以的单调增区间为,的单调减区间为;(2)(i)由(1)可知,当时,在上单调递增,至多一个零点,不符题意,当时,因为有两个零点,所以,解得,因为,且,所以存在,使得,又因为,设,则,所以单调递增,所以,即,因为,所以存在,使得,综上,;(ii)因为,所以,因为,所以,设,则,所以,解得,所以,所以,设,则,设,则,所以单调递增,所以,所以,即,所以单调递增,即随着的增大而增大,所以随着的增大而增大,命题得证.【点睛】此题考查利用导函数处理函数的单调性,根据函数的零点个数求参数的取值范围,通过等价转化证明与零点相关的命题.20、()(为参数);()【解析】()设点,则,代入
19、化简得到答案.()分别计算,的极坐标方程为,取代入计算得到答案.【详解】()设点,故,故的参数方程为:(为参数).(),故,极坐标方程为:;,故,极坐标方程为:.,故,故.【点睛】本题考查了参数方程,极坐标方程,弦长,意在考查学生的计算能力和转化能力.21、();();().【解析】()由已知结合正弦定理先进行代换,然后结合和差角公式及正弦定理可求;()由余弦定理可求,然后结合三角形的面积公式可求;()结合二倍角公式及和角余弦公式即可求解【详解】()因为,所以,所以,由正弦定理可得,;()由余弦定理可得,整理可得,解可得,因为,所以;()由于,所以【点睛】本题主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面积公式的综合应用,意在考查学生对这些知识的理解掌握水平22、(1)(2)见解析【解析】(1)因为数列的前项和满足:,所以当时,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.