江苏省扬州市部分校2023年中考试题猜想数学试卷含解析.doc

上传人:茅**** 文档编号:88304267 上传时间:2023-04-25 格式:DOC 页数:19 大小:826.50KB
返回 下载 相关 举报
江苏省扬州市部分校2023年中考试题猜想数学试卷含解析.doc_第1页
第1页 / 共19页
江苏省扬州市部分校2023年中考试题猜想数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《江苏省扬州市部分校2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市部分校2023年中考试题猜想数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1 “a是实数,|a|0”这一事件是( )A必然事件B不确定事件C不可能事件D随机事件2等式成立的x的取值范围在数轴上可表示为( )ABCD3下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD4下列函数中,y随着x的增大而减小的是( )Ay=3xBy=3xCD5如图,AOB45,O

2、C是AOB的角平分线,PMOB,垂足为点M,PNOB,PN与OA相交于点N,那么的值等于()ABCD6不解方程,判别方程2x23x3的根的情况()A有两个相等的实数根B有两个不相等的实数根C有一个实数根D无实数根7对于命题“如果1+190,那么11”能说明它是假命题的是()A150,140B140,150C130,160D11458下列各式计算正确的是( )Aa+3a=3a2B(a2)3=a6Ca3a4=a7D(a+b)2=a22ab+b291桌面上放置的几何体中,主视图与左视图可能不同的是( )A圆柱 B正方体 C球 D直立圆锥10已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点

3、,则k的取值范围是( )Ak2且k1Bk0)的图象上,OAD的面积=OCE的面积,OBD的面积=OBE的面积=四边形ODBE的面积=1,BE=2EC,OCE的面积=OBE的面积=2,k=1故答案为:1【点睛】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变16、【解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解: .故填.【点睛】主要考查的是完全平方公式及二次根式的混合

4、运算,注意最终结果要化成最简二次根式的形式.17、-1【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案试题解析:由-2amb4与5a2bn+7是同类项,得,解得m+n=-1考点:同类项三、解答题(共7小题,满分69分)18、证明见解析;【解析】根据HL定理证明RtABCRtDEF,根据全等三角形的性质证明即可【详解】,BE为公共线段,CE+BE=BF+BE,即 又,在与中, AC=DF.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键19、(1)a=0.24,b=2,c=

5、0.04;(2)600人;(3)人. 【解析】(1)利用50x60的频数和频率,根据公式:频率频数总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:80.16=50(名)a=1250=0.24,70x80的人数为:500.5=25(名)b=50812253=2(名)c=250=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数

6、不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:10000.6=600(人)这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,抽取的2名同学来自同一组的概率P=【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步

7、完成的事件;树形图法适合两步或两步以上完成的事件;概率所求情况数与总情况数之比20、(1)y=x2+2x+3;D(1,4);(2)证明见解析;(3)m=;【解析】(1)把C点坐标代入y=x2+2mx+3m2可求出m的值,从而得到抛物线解析式,然后把一般式配成顶点式得到D点坐标;如图1,先解方程x2+2x+3=0得B(3,0),则可判断OCB为等腰直角三角形得到OBC=45,再证明CDE为等腰直角三角形得到DCE=45,从而得到DCE=BCE;(2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程x2

8、+2mx+3m2=0得B(3m,0),同时确定C(0,3m2),再利用相似比表示出GF=2m2,则DG=2m2,接着证明DCG=DGC得到DC=DG,所以m2+(4m23m2)2=4m4,然后解方程可求出m【详解】(1)把C(0,3)代入y=x2+2mx+3m2得3m2=3,解得m1=1,m2=1(舍去),抛物线解析式为y=x2+2x+3; 顶点D为(1,4); 证明:如图1,当y=0时,x2+2x+3=0,解得x1=1,x2=3,则B(3,0),OC=OB,OCB为等腰直角三角形,OBC=45,CE直线x=1,BCE=45,DE=1,CE=1,CDE为等腰直角三角形,DCE=45,DCE=B

9、CE;(2)解:抛物线的对称轴交x轴于F点,交直线BC于G点,如图2, 抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),当y=0时,x2+2mx+3m2=0,解得x1=m,x2=3m,则B(3m,0),当x=0时,y=x2+2mx+3m2=3m2,则C(0,3m2),GFOC,即 解得GF=2m2,DG=4m22m2=2m2,CB平分DCO,DCB=OCB,OCB=DGC,DCG=DGC,DC=DG,即m2+(4m23m2)2=4m4, 而m0, 【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵

10、活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式21、(1)4+;(2).【解析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题【详解】(1)=4+1+|12|=4+1+|1|=4+1+1=4+;(2) =【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法22、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利用菱形、矩形的性质,求出圆心角COD即可解决问题.【详解】(1

11、)如图连接OB、BC,OA=OB,OAB=OBA=30,COB=OAB=OBA=60,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60,COD=2CAD=60,的长=cm;当四边形ADCB是矩形时,易知COD=120,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.23、(1)50;(2)115.2;(3). 【解析】

12、(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案解:(1)参加本次比赛的学生有:(人) (2)B等级的学生共有:(人). 所占的百分比为:B等级所对应扇形的圆心角度数为:. (3)列表如下:男女1女2女3男(女,男)(女,男)(女,男)女1(男,女)(女,女)(女,女)女2(男,女)(女,女)(女,女)女3(男,女)(女,女)(女,女)共有12种等可能的结果,选中1名男生和1名女生结果的有6种.P(选中1名男生和1名女生).“点睛”本题考查了列表法与

13、树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键24、(1)楼房的高度约为17.3米;(2)当45时,老人仍可以晒到太阳理由见解析.【解析】试题分析:(1)在RtABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在RtABE中,,BA=10tan60=米.即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下:假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.BFA=45,,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.CH=CF=0.1米,大楼的影子落在台阶MC这个侧面上.小猫仍可晒到太阳.考点:解直角三角形.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁