《江苏省南通市田家炳中学2023年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南通市田家炳中学2023年中考试题猜想数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达若设走路线一时的平均速度为x千米/小时,根据题意,
2、得ABCD2将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为()A10cmB30cmC45cmD300cm3下列由左边到右边的变形,属于因式分解的是()A(x1)(x1)x21Bx22x1x(x2)1Ca2b2(ab)(ab)Dmxmynxnym(xy)n(xy)4如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO2,OB1,BC2,则下列结论正确的是( )ABCD5小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟
3、,则列方程正确的是()ABCD6如图,小明从A处出发沿北偏西30方向行走至B处,又沿南偏西50方向行走至C处,此时再沿与出发时一致的方向行走至D处,则BCD的度数为() A100B80C50D207如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分BAD,分别交BC、BD于点E、P,连接OE,ADC=60,AB=BC=1,则下列结论:CAD=30BD=S平行四边形ABCD=ABACOE=ADSAPO=,正确的个数是()A2B3C4D58若23,则a的值可以是()A7BCD129如图,四边形ABCD内接于O,AB为O的直径,点C为弧BD的中点,若DAB=50,则ABC的大小是()A5
4、5B60C65D7010下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上(1)已知a=1,点B的纵坐标为1如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为_(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =_12一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸
5、出一个球,则两次摸出的球都是红球的概率是_13计算:|-3|-1=_14如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PEBC于点E,PFDC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:MF=MC;AHEF;AP2=PMPH; EF的最小值是其中正确的是_(把你认为正确结论的序号都填上)15一元二次方程x24=0的解是_16据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为_17如果反比例函数的图象经过点A(2,y1)与B(3,y
6、2),那么的值等于_.三、解答题(共7小题,满分69分)18(10分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元求A,B两种品牌的足球的单价求该校购买20个A品牌的足球和2个B品牌的足球的总费用19(5分)如图,在ABC中,BAC=90,AB=AC,D为AB边上一点,连接CD,过点A作AECD于点E,且交BC于点F,AG平分BAC交CD于点G.求证:BF=AG.20(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30位于军舰A正上方1000米的
7、反潜直升机B侧得潜艇C的俯角为68试根据以上数据求出潜艇C离开海平面的下潜深度(结果保留整数参考数据:sin680.9,cos680.4,tan682.5, 1.7)21(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角
8、是 ;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平22(10分)如图,ABC与A1B1C1是位似图形(1)在网格上建立平面直角坐标系,使得点A的坐标为(6,1),点C1的坐标为(3,2),则点B的坐标为_;(2)以点A为位似中心,在网格图中作A
9、B2C2,使AB2C2和ABC位似,且位似比为12;(3)在图上标出ABC与A1B1C1的位似中心P,并写出点P的坐标为_,计算四边形ABCP的周长为_23(12分)如图,在ABC中,AB=AC,D为BC的中点,DEAB,DFAC,垂足分别为E、F,求证:DE=DF24(14分)已知关于x的一元二次方程kx26x+10有两个不相等的实数根(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是3
10、0千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程解:设走路线一时的平均速度为x千米/小时,故选A2、A【解析】根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。【详解】直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形假设每个圆锥容器的地面半径为解得故答案选A.【点睛】本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。3、C【解析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的
11、形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.4、C【解析】根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.【详解】解:AO2,OB1,BC2,a2,b1,c3,|a|c|,ab0,故选:C【点睛】此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.5、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难
12、度不大6、B【解析】解:如图所示:由题意可得:1=30,3=50,则2=30,故由DCAB,则4=30+50=80故选B点睛:此题主要考查了方向角的定义,正确把握定义得出3的度数是解题关键7、D【解析】先根据角平分线和平行得:BAE=BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:ABE是等边三角形,由外角的性质和等腰三角形的性质得:ACE=30,最后由平行线的性质可作判断;先根据三角形中位线定理得:OE=AB=,OEAB,根据勾股定理计算OC=和OD的长,可得BD的长;因为BAC=90,根据平行四边形的面积公式可作判断;根据三角形中位线定理可作判断;根据同高三角形面积
13、的比等于对应底边的比可得:SAOE=SEOC=OEOC=,代入可得结论【详解】AE平分BAD,BAE=DAE,四边形ABCD是平行四边形,ADBC,ABC=ADC=60,DAE=BEA,BAE=BEA,AB=BE=1,ABE是等边三角形,AE=BE=1,BC=2,EC=1,AE=EC,EAC=ACE,AEB=EAC+ACE=60,ACE=30,ADBC,CAD=ACE=30,故正确;BE=EC,OA=OC,OE=AB=,OEAB,EOC=BAC=60+30=90,RtEOC中,OC=,四边形ABCD是平行四边形,BCD=BAD=120,ACB=30,ACD=90,RtOCD中,OD=,BD=2
14、OD=,故正确;由知:BAC=90,SABCD=ABAC,故正确;由知:OE是ABC的中位线,又AB=BC,BC=AD,OE=AB=AD,故正确;四边形ABCD是平行四边形,OA=OC=,SAOE=SEOC=OEOC=,OEAB,SAOP= SAOE=,故正确;本题正确的有:,5个,故选D【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系8、C【解析】根据已知条件得到4a-29,由此求得a的取值范围,易得符合条件的选项【详解】解:23,
15、4a-29,6a1又a-20,即a2a的取值范围是6a1观察选项,只有选项C符合题意故选C【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法9、C【解析】连接OC,因为点C为弧BD的中点,所以BOC=DAB=50,因为OC=OB,所以ABC=OCB=65,故选C10、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可详解:A是轴对称图形,不是中心对称图形; B是轴对称图形,也是中心对称图形; C是轴对称图形,不是中心对称图形; D是轴对称图形,不是中心对称图形 故选B点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对
16、称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合二、填空题(共7小题,每小题3分,满分21分)11、4 【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,x=,B在第一象限,A(,1),B(,1),AB=1,向右平移抛物线L使该抛物线过点B,AB=BC=1,AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BKx轴于K,设OK=t,则AB=BC=1t,B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x0)(
17、x4t),y=a3x(x4t),该抛物线过点B(t,at1),at1=a3t(t4t),t0,a=3a3,=,故答案为(1)4;(1)点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.12、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.13、2【解析】根据有理数的加减混合运算法则计算.【详解
18、】解:|3|1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.14、【解析】可用特殊值法证明,当为的中点时,可见.可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.先证明,得到,再根据,得到,代换可得.根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.【详解】解:错误.当为的中点时,可见;正确.如图,连接,交于点,四边形为矩形,.正确.,又,.正确.且四边形为矩形,当时,取最小值,此时,故的最小值为.故答案为:.【点睛】本题是动点问题,综合考查了矩形、正方形的
19、性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.15、x=1【解析】移项得x1=4,x=1故答案是:x=116、1.731【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将17.3万用科学记数法表示为1.731故答案为1.731【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.17、【解析】分析:由已知条件易得2
20、y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.详解:反比例函数的图象经过点A(2,y1)与B(3,y2),2y1=k,3y2=k,2y1=3y2,.故答案为:.点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.三、解答题(共7小题,满分69分)18、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1【解析】(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;(2)把(1)中的数据代入求值即可【详解】(1
21、)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:答:一个A品牌的足球需40元,则一个B品牌的足球需100元;(2)依题意得:2040+2100=1(元)答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元考点:二元一次方程组的应用19、见解析【解析】根据角平分线的性质和直角三角形性质求BAF=ACG.进一步证明ABFCAG,从而证明BF=AG.【详解】证明:BAC=90,AB=AC,B=ACB=45,又AG平分BAC,GAC=BAC=45,又BAC=90,AECD,BAF+ADE=90,ACG +ADE=90,BAF=ACG. 又AB=CA,ABFCAG(AS
22、A),BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.20、潜艇C离开海平面的下潜深度约为308米【解析】试题分析:过点C作CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在RtACD中表示出CD和在RtBCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解试题解析:过点C作CDAB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:ACD=30,BCD=68,设AD=x,则BD=BA+AD=1000+x,在RtACD中,CD= = = 在RtBCD中,BD=CDtan68,325+x= t
23、an68解得:x100米,潜艇C离开海平面的下潜深度为100米点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解视频21、 (1)40;(2)144;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:36040
24、%=144,故答案为144;(3)调查的结果为D等级的人数为:40040%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)作图见解析;点B的坐标为:(2,5);(2)作图见解析;(3) 【解析】分析:(1)直接利用已知点位置得出B点坐标即可; (2)直接利用位似图形的性质得出对应点位置进而得出答案; (3)直接利用位似图形的性质
25、得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长详解:(1)如图所示:点B的坐标为:(2,5); 故答案为(2,5); (2)如图所示:AB2C2,即为所求; (3)如图所示:P点即为所求,P点坐标为:(2,1),四边形ABCP的周长为:+=4+2+2+2=6+4 故答案为6+4 点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键23、答案见解析【解析】由于AB=AC,那么B=C,而DEAC,DFAB可知BFD=CED=90,又D是BC中点,可知BD=CD,利用AAS可证BFDCED,从而有DE=DF24、(1)(2) , 【解析】【分析】(1)根据一元二次方程的定义可知k0,再根据方程有两个不相等的实数根,可知0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) 是小于9的最大整数,此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.