《江苏省南京市玄武区2023届高三冲刺模拟数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市玄武区2023届高三冲刺模拟数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是( )ABCD2已知,若实数,满足不等式组,则目标函数( )A有最大值,无最小值B有最大值,有最小值C无最大值,有最小值D无最大值,无最小值3一个几何体的三视图如图所示,则该几何体的体积为( )ABCD4设数列的各项均为正数,前项和为,且,则( )A128B65C64D635设为虚数单位,复数,则实数的值是( )A1B-1C0D26下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A1B
3、2C3D47已知直线与直线则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件8已知函数在上的值域为,则实数的取值范围为( )ABCD9直线与圆的位置关系是( )A相交B相切C相离D相交或相切10已知集合,则( )ABCD11已知圆与抛物线的准线相切,则的值为()A1B2CD412正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2CD二、填空题:本题共4小题,每小题5分,共20分。13在中,角,的对边分别是,若,则的面积的最大值为_.14已知实数,满足,则目标函数的最小值为_15某几何体的三视图如图所示(单位:),则该几何体的表面积是_,体积是_
4、.16在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;()为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;()在满足()的条件下,若以这户居民用
5、电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.18(12分)已知数列满足,且,成等比数列(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,求数列的前n项和19(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000
6、以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:20(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.21(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为
7、,直线的极坐标方程为,点(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积22(10分)如图,在直三棱柱中,点分别为和的中点.()棱上是否存在点使得平面平面?若存在,写出的长并证明你的结论;若不存在,请说明理由.()求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由三角函数的周期可得,由函数图像的变换可得, 平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本
8、题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.2、B【解析】判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.3、A【解析】根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题4、D【解析】根据,得到,即,由等比数列的
9、定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.5、A【解析】根据复数的乘法运算化简,由复数的意义即可求得的值.【详解】复数,由复数乘法运算化简可得,所以由复数定义可知,解得,故选:A.【点睛】本题考查了复数的乘法运算,复数的意义,属于基础题.6、C【解析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判
10、定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键
11、,着重考查了分析问题和解答问题的能力,属于基础题7、B【解析】利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线 ,此时两条直线平行;当时,直线,直线 ,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.8、A【解析】将整理为,根据的范围可求得;根据,结合的值域和的图象,可知,解不等式求得结果.【详解】当时,又,由在上的值域为 解得:本题正确选项:【点睛】本题考查利
12、用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.9、D【解析】由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论【详解】解:由题意,圆的圆心为,半径,圆心到直线的距离为,故选:D【点睛】本题主要考查直线与圆的位置关系,属于基础题10、C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.11、B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!12
13、、D【解析】设等比数列的公比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q【详解】由题意,正项等比数列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】化简得到,根据余弦定理和均值不等式得到,根据面积公式计算得到答案.【详解】,即,故.根据余弦定理:,即.当时等号成立,故.故答案为:.【点睛】本题考查了三角恒等
14、变换,余弦定理,均值不等式,面积公式,意在考查学生的综合应用能力和计算能力.14、-1【解析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值【详解】作出实数x,y满足对应的平面区域如图阴影所示;由zx+2y1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小由,得A(1,1),此时z的最小值为z1211,故答案为1【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题15、,.【解析】试题分析:由题意得,该几何体为三棱柱,故其表面积,体积,故填:,.考点:1.三视图;2.空间几何体的表面积与体积.16
15、、【解析】取的中点,设等边三角形的中心为,连接.根据等边三角形的性质可求得, 由等腰直角三角形的性质,得,根据面面垂直的性质得平面,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.三、解答题:共70分。解答应写出文字说明
16、、证明过程或演算步骤。17、(1);(2),;(3)见解析.【解析】试题分析: (1)根据题意分段表示出函数解析式;(2)将代入(1)中函数解析式可得,即,根据频率分布直方图可分别得到关于的方程,即可得;(3)取每段中点值作为代表的用电量,分别算出对应的费用值,对应得出每组电费的概率,即可得到的概率分布列,然后求出的期望.试题解析:(1)当时,;当当时,;当当时,所以与之间的函数解析式为.(2)由(1)可知,当时,则,结合频率分布直方图可知,(3)由题意可知可取50,150,250,350,450,550,当时,当时,当时,当时,当时,当时,故的概率分布列为25751402203104100.
17、10.20.30.20.150.05所以随机变量的数学期望18、(1)见解析;(2)【解析】(1)因为,所以,所以,所以数列是等差数列, 设数列的公差为,由可得,因为成等比数列,所以,所以,所以,因为,所以, 解得(舍去)或,所以,所以 (2)由(1)知,所以, 所以19、(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望【详解】解(1)(i)运动达人非运动达人总计男
18、352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望属于中档题本题难点在于认识到20、(1);(2).【解析】(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,则当时,由得,解得;当时,恒成立;当时,由得,解得.所以的解集为(2)对任意,都存在,得成立,等价于
19、.因为,所以,且|,当时,式等号成立,即.又因为,当时,式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.21、(1)(2)【解析】(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即曲线的极坐标方程为直线的极坐标方程为,即,直线的直角坐标方程为(2)设,解得又,(舍去)点到直线的距离为,的面积为【点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只
20、能先转化为直角坐标再转化为极坐标,属于较易题目.22、()存在点满足题意,且,证明详见解析;().【解析】()可考虑采用补形法,取的中点为,连接,可结合等腰三角形性质和线面垂直性质,先证平面,即,若能证明,则可得证,可通过我们反推出点对应位置应在处,进而得证;()采用建系法,以为坐标原点,以分别为轴建立空间直角坐标系,分别求出两平面对应法向量,再结合向量夹角公式即可求解;【详解】()存在点满足题意,且.证明如下:取的中点为,连接.则,所以平面.因为是的中点,所以.在直三棱柱中,平面平面,且交线为,所以平面,所以.在平面内,所以,从而可得.又因为,所以平面.因为平面,所以平面平面.()如图所示,以为坐标原点,以分别为轴建立空间直角坐标系.易知,所以,.设平面的法向量为,则有取,得.同理可求得平面的法向量为.则.由图可知二面角为锐角,所以其余弦值为.【点睛】本题考查面面垂直的判定定理、向量法求二面角的余弦值,属于中档题