江苏省南京市玄武区溧水高中2023届高三第一次模拟考试数学试卷含解析.doc

上传人:茅**** 文档编号:88303922 上传时间:2023-04-25 格式:DOC 页数:21 大小:2.13MB
返回 下载 相关 举报
江苏省南京市玄武区溧水高中2023届高三第一次模拟考试数学试卷含解析.doc_第1页
第1页 / 共21页
江苏省南京市玄武区溧水高中2023届高三第一次模拟考试数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《江苏省南京市玄武区溧水高中2023届高三第一次模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市玄武区溧水高中2023届高三第一次模拟考试数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD2复数在复平面内对应的点为则( )ABCD3半径为2的球内

2、有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( )ABCD4一个封闭的棱长为2的正方体容器,当水平放置时,如图,水面的高度正好为棱长的一半若将该正方体绕下底面(底面与水平面平行)的某条棱任意旋转,则容器里水面的最大高度为( )ABCD5执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D636已知函数,若,则等于( )A-3B-1C3D07已知直线是曲线的切线,则( )A或1B或2C或D或18在平面直角坐标系中,已知点,若动点满足 ,则的取值范围是( )ABCD9某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD10下列说法正确的是( )A“若,则”

3、的否命题是“若,则”B“若,则”的逆命题为真命题C,使成立D“若,则”是真命题11已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是ABCD12函数的图象如图所示,则它的解析式可能是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13运行下面的算法伪代码,输出的结果为_14已知两动点在椭圆上,动点在直线上,若恒为锐角,则椭圆的离心率的取值范围为_15设等差数列的前项和为,若,则_,的最大值是_.16已知数列满足,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知.(1)若是上的增函数,求的取值范围

4、;(2)若函数有两个极值点,判断函数零点的个数.18(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.19(12分)某商场以分期付款方式销售某种商品,根据以往资料统计,顾客购买该商品选择分期付款的期数的分布列为:2340.4其中,()求购买该商品的3位顾客中,恰有2位选择分2期付款的概率;()商场销售一件该商品,若顾客选择分2期付款,则商场获得利润l00元,若顾客选择分3期付款,则商场获得利润150元,若顾客选择分4期付款,则商场获得利润200元.商场销售两件该商品所获的利润记为(单位:元)()求的

5、分布列;()若,求的数学期望的最大值.20(12分)已知函数.(1)若恒成立,求的取值范围;(2)设函数的极值点为,当变化时,点构成曲线,证明:过原点的任意直线与曲线有且仅有一个公共点.21(12分)如图,在三棱柱ABCA1B1C1中,A1A平面ABC,ACB90,ACCBC1C1,M,N分别是AB,A1C的中点.(1)求证:直线MN平面ACB1;(2)求点C1到平面B1MC的距离.22(10分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根

6、据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.2、B【解析】求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.3、B【解析】设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高

7、分别为,则,在中,化为,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.4、B【解析】根据已知可知水面的最大高度为正方体面对角线长的一半,由此得到结论【详解】正方体的面对角线长为,又水的体积是正方体体积的一半,且正方体绕下底面(底面与水平面平行)的某条棱任意旋转,所以容器里水面的最大高度为面对角线长的一半,即最大水面高度为,故选B.【点睛】本题考查了正方体的几何特征,考查了空间想象能力,属于基础题5、B【解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最大值为15,故选B.考点:程序

8、框图.6、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系. 7、D【解析】求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.8、D【解析】设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设 ,则, 为点

9、的轨迹方程点的参数方程为(为参数) 则由向量的坐标表达式有:又故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:直接法;定义法;相关点法;参数法;待定系数法9、D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.10、D【解析】选项A,否命题为“若,则”,故A不正

10、确选项B,逆命题为“若,则”,为假命题,故B不正确选项C,由题意知对,都有,故C不正确选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确选D11、D【解析】根据点差法得,再根据焦点坐标得,解方程组得,即得结果.【详解】设双曲线的方程为,由题意可得,设,则的中点为,由且,得 , ,即,联立,解得,故所求双曲线的方程为故选D【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.12、B【解析】根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项, 与函数图象不一致;选项符合函

11、数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】模拟程序的运行过程知该程序运行后计算并输出的值,用裂项相消法求和即可.【详解】模拟程序的运行过程知,该程序运行后执行:.故答案为:【点睛】本题考查算法语句中的循环语句和裂项相消法求和;掌握循环体执行的次数是求解本题的关键;属于基础题.14、【解析】根据题意可知圆上任意一点向椭圆所引的两条切线互相垂直,恒为锐角,只需直线 与圆相离,从而可得,解不等式,再利用离心率即可求解.【详解】根据题意可得,圆上任意一点向椭圆所引的两条切线互相

12、垂直,因此当直线 与圆相离时, 恒为锐角,故,解得 从而离心率.故答案为:【点睛】本题主要考查了椭圆的几何性质,考查了逻辑分析能力,属于中档题.15、 【解析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),令,则且,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题

13、16、【解析】数列满足知,数列以3为公比的等比数列,再由已知结合等比数列的性质求得的值即可.【详解】,数列是以3为公比的等比数列,又,故答案为:【点睛】本题考查了等比数列定义,考查了对数的运算性质,考查了等比数列的通项公式,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2) 三个零点【解析】(1) 由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,时,递减,时,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,一

14、方面,且在递减,所以在区间有一个零点.另一方面,设 ,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为, ,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得 ,令,则,当时,递减,则,而,故;当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有: ,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.【点睛】本题考查函数的零点,导数的综合应用在研究函数零点时,有一种方法是把函数的零点转化为方程

15、的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论18、(1);(2)证明见解析.【解析】(1)求出,判断函数的单调性,求出函数的最大值,即求的范围;(2)由(1)可知, .对分和两种情况讨论,构造函数,利用放缩法和基本不等式证明结论【详解】(1)由,得.令.当时,;当时,;在上单调递增,在上单调递减,.对任意恒成立,.(2)证明:由(1)可知,在上单调递增,在上单调递减,.若,则,令在上单调递增,.又,在上单调递减,.若,则显然成立.综上,.又以上两式左右两端分别相加,得,即,

16、所以.【点睛】本题考查利用导数解决不等式恒成立问题,利用导数证明不等式,属于难题.19、()0.288()()见解析()数学期望的最大值为280【解析】()根据题意,设购买该商品的3位顾客中,选择分2期付款的人数为,由独立重复事件的特点得出,利用二项分布的概率公式,即可求出结果;()()依题意,的取值为200,250,300,350,400,根据离散型分布求出概率和的分布列;()由题意知,解得,根据的分布列,得出的数学期望,结合,即可算出的最大值.【详解】解:()设购买该商品的3位顾客中,选择分2期付款的人数为,则,则,故购买该商品的3位顾客中,恰有2位选择分2期付款的概率为0.288.()(

17、)依题意,的取值为200,250,300,350,400,的分布列为:2002503003504000.16(),由题意知,又,即,解得,当时,的最大值为280,所以的数学期望的最大值为280.【点睛】本题考查独立重复事件和二项分布的应用,以及离散型分布列和数学期望,考查计算能力.20、(1);(2)证明见解析【解析】(1)由恒成立,可得恒成立,进而构造函数,求导可判断出的单调性,进而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,则,进而可得,即曲线的方程为,进而只需证明对任意,方程有唯一解,然后构造函数,分、和三种情况,分别证明函数在上有唯一的零点,即可证明结论成立.【详解】(1)

18、由题意,可知,由恒成立,可得恒成立.令,则.令,则,在上单调递增,又,时,;时,即时,;时,时,单调递减;时,单调递增,时,取最小值,.(2)证明:由,令,由,结合二次函数性质可知,存在唯一的,使得,故存在唯一的极值点,则,曲线的方程为.故只需证明对任意,方程有唯一解.令,则,当时,恒成立,在上单调递增.,存在满足时,使得.又单调递增,所以为唯一解.当时,二次函数,满足,则恒成立,在上单调递增.,存在使得,又在上单调递增,为唯一解.当时,二次函数,满足,此时有两个不同的解,不妨设, 列表如下:00极大值极小值由表可知,当时,的极大值为.,.下面来证明,构造函数,则,当时,此时单调递增,时,故成

19、立.,存在,使得.又在单调递增,为唯一解.所以,对任意,方程有唯一解,即过原点任意的直线与曲线有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.21、(1)证明见解析.(2)【解析】(1)连接AC1,BC1,结合中位线定理可证MNBC1,再结合线面垂直的判定定理和线面垂直的性质分别求证ACBC1,BC1B1C,即可求证直线MN平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则NAC1且

20、N为AC1的中点;M是AB的中点.所以:MNBC1;A1A平面ABC,AC平面ABC,A1AAC,在三棱柱ABCA1B1C1中,AA1CC,ACCC1,ACB90,BCCC1C,BC平面BB1C1C,CC1平面BB1C1C,AC平面BB1C1C,BC平面BB1C1C,ACBC1;又MNBC1ACMN,CBC1C1,四边形BB1C1C正方形,BC1B1C,MNB1C,而ACB1CC,且AC平面ACB1,CB1平面ACB1,MN平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以MP,因为CM,B1C;B1M,所以所以:CMB1M.因为,所以,解得所以点,到平面的距离为 【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题22、(1)(2)【解析】(1)当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁