山东省泰安市新泰市重点达标名校2023届中考数学四模试卷含解析.doc

上传人:lil****205 文档编号:88000609 上传时间:2023-04-19 格式:DOC 页数:19 大小:843KB
返回 下载 相关 举报
山东省泰安市新泰市重点达标名校2023届中考数学四模试卷含解析.doc_第1页
第1页 / 共19页
山东省泰安市新泰市重点达标名校2023届中考数学四模试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《山东省泰安市新泰市重点达标名校2023届中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省泰安市新泰市重点达标名校2023届中考数学四模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲5513514

2、9191乙55135151110某同学分析上表后得出如下结论:甲、乙两班学生的平均成绩相同;乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀);甲班成绩的波动比乙班大上述结论中,正确的是()ABCD2如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,函数y=(k0)的图象经过点B,则k的值为()A12B32C32D363下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个4如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )AMBNCPDQ5如图,矩形ABCD中,AB=

3、8,BC=1点E在边AB上,点F在边CD上,点G、H在对角线AC上若四边形EGFH是菱形,则AE的长是( )A2B3C5D66一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确7已知a1,点A(x1,2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()Ax1x2x3Bx1x3x2Cx

4、3x1x2Dx2x3x18若直线y=kx+b图象如图所示,则直线y=bx+k的图象大致是( )ABCD9如图,将OAB绕O点逆时针旋转60得到OCD,若OA4,AOB35,则下列结论错误的是()ABDO60BBOC25COC4DBD410下列计算正确的是()A2x23x2x2Bxxx2C(x1)x1D3x3x11在1、1、3、2这四个数中,最大的数是()A1B1C3D212如图,点D在ABC边延长线上,点O是边AC上一个动点,过O作直线EFBC,交BCA的平分线于点F,交BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是()A2ACE=BAC+BBEF

5、=2OCCFCE=90D四边形AFCE是矩形二、填空题:(本大题共6个小题,每小题4分,共24分)13我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_m14如图,将周长为8的ABC沿BC方向向右平移1个单位得到DEF,则四边形ABFD的周长为 15如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_(结果保留)16分解因式=_,=_17如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB8,CD2,则EC的长

6、为_18如图,在ABC中,C=40,CA=CB,则ABC的外角ABD= 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好此时,路灯的灯柱AB的高应该设计为多少米(结果保留根号)20(6分)如图,交于点求的值21(6分)“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:本次比

7、赛参赛选手共有 人,扇形统计图中“69.579.5”这一组人数占总参赛人数的百分比为 ;赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.22(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若PAC为直角三角形,直接写出此时点P的坐标23(8分)一个不透明的口

8、袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.24(10分)如图,AB是O的直径,点C是AB延长线上的点,CD与O相切于点D,连结BD、AD(1)求证;BDCA(2)若C45,O的半径为1,直接写出AC的长25(10分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线

9、CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围26(12分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和请你用画树状图或列表的方法,求出这两数和为6的概率如果和为奇数,则小明胜;若和为偶数,则小亮胜你认为这个游戏规则对双方公平吗?做出判断,并说明理由27(12分)求抛物线y=x2+x2与x轴的交点坐标参考答案一、选择题(本大题

10、共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大故正确,故选D点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、B【解析】解:O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,OA=5,ABOC,点B的坐标为(8,4),函数y=(k0)的图象经过点B,4=,得k=32.故选B.【点睛】本题

11、主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.3、C【解析】根据轴对称图形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合4、A【解析】解:点P所表示的数为a,点P在数轴的右边,-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,数-

12、3a所对应的点可能是M,故选A点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍5、C【解析】试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EFAC;利用”AAS或ASA”易证FMCEMA,根据全等三角形的性质可得AM=MC;在RtABC中,由勾股定理求得AC=,且tanBAC=;在RtAME中,AM=AC=,tanBAC=可得EM=;在RtAME中,由勾股定理求得AE=2故答案选C考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数6、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正

13、负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,

14、则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大7、B【解析】根据的图象上的三点,把三点代入可以得到x1 ,x1 ,x3,在根据a的大小即可解题【详解】解:点A(x1,1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,x1 ,x1 ,x3 ,a1,a10,x1x3x1故选B【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来

15、判断8、A【解析】根据一次函数y=kx+b的图象可知k1,b1,再根据k,b的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,即可判断【详解】解:一次函数y=kx+b的图象可知k1,b1,-b1,一次函数y=bx+k的图象过一、二、三象限,与y轴的正半轴相交,故选:A【点睛】本题考查了一次函数的图象与系数的关系函数值y随x的增大而减小k1;函数值y随x的增大而增大k1;一次函数y=kx+b图象与y轴的正半轴相交b1,一次函数y=kx+b图象与y轴的负半轴相交b1,一次函数y=kx+b图象过原点b=19、D【解析】由OAB绕O点逆时针旋转60得到OCD知AOC=BOD=60,AO=C

16、O=4、BO=DO,据此可判断C;由AOC、BOD是等边三角形可判断A选项;由AOB=35,AOC=60可判断B选项,据此可得答案【详解】解:OAB绕O点逆时针旋转60得到OCD,AOC=BOD=60,AO=CO=4、BO=DO,故C选项正确;则AOC、BOD是等边三角形,BDO=60,故A选项正确;AOB=35,AOC=60,BOC=AOC-AOB=60-35=25,故B选项正确.故选D【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等及等边三角形的判定和性质10、C【解析】根据合并同类项法则和去括号

17、法则逐一判断即可得【详解】解:A2x2-3x2=-x2,故此选项错误;Bx+x=2x,故此选项错误;C-(x-1)=-x+1,故此选项正确;D3与x不能合并,此选项错误;故选C【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键11、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负

18、数,绝对值大的其值反而小12、D【解析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2ACE=BAC+B,EF=2OC,FCE=90,进而得到结论【详解】解:ACD是ABC的外角,ACD=BAC+B,CE平分DCA,ACD=2ACE,2ACE=BAC+B,故A选项正确;EFBC,CF平分BCA,BCF=CFE,BCF=ACF,ACF=EFC,OF=OC,同理可得OE=OC,EF=2OC,故B选项正确;CF平分BCA,CE平分ACD,ECF=ACE+ACF=180=90,故C选项正确;O不一定是AC的中点,四边形AECF不一定是平行四边形,四边形AFCE不一定是矩形,故D选项错

19、误,故选D【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、1101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:10nm用科学记数法可表示为110-1m,故答案为110-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定14、1【解析】试题解析:根据题意,将周长为8的ABC沿边BC向右平移1

20、个单位得到DEF,则AD=1,BF=BC+CF=BC+1,DF=AC, 又AB+BC+AC=1, 四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1考点:平移的性质15、cm1【解析】求出AD,先分别求出两个扇形的面积,再求出答案即可【详解】解:AB长为15cm,贴纸部分的宽BD为15cm,AD=10cm,贴纸的面积为S=S扇形ABCS扇形ADE=(cm1),故答案为cm1【点睛】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键16、 【解析】此题考查因式分解答案点评:利用提公因式、平方差公式、完全平方公式分解因式17、【解析】设O半径为r,根据勾股定理列方

21、程求出半径r,由勾股定理依次求BE和EC的长【详解】连接BE,设O半径为r,则OA=OD=r,OC=r-2,ODAB,ACO=90,AC=BC=AB=4,在RtACO中,由勾股定理得:r2=42+(r-2)2,r=5,AE=2r=10,AE为O的直径,ABE=90,由勾股定理得:BE=6,在RtECB中,EC.故答案是:.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键18、110【解析】试题解析:解:C40,CACB,AABC70,ABDAC110.考点:等腰三角形的性质、三角形外角的性质点评:本题主要考查了等腰三角形的性质、三角形外

22、角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (104)米【解析】延长OC,AB交于点P,PCBPAO,根据相似三角形对应边比例相等的性质即可解题【详解】解:如图,延长OC,AB交于点PABC=120,PBC=60,OCB=A=90,P=30,AD=20米,OA=AD=10米,BC=2米,在RtCPB中,PC=BCtan60=米,PB=2BC=4米,P=P,PCB=A=90,PCBPAO,PA=米,AB=PAPB=()米答:路灯的灯柱AB高应该设计为()米20、【解析】试题分

23、析:本题考查了相似三角形的判定与性质,解直角三角形.由A=ACD,AOB=COD可证ABOCDO,从而;再在RtABC和RtBCD中分别求出AB和CD的长,代入即可.解:ABC=BCD=90,ABCD,A=ACD,ABOCDO,在RtABC中,ABC=90,A=45,BC=1,AB=1在RtBCD中,BCD =90,D=30,BC=1,CD=,21、(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.569.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.599.5这一分数段所占的百分比,用1减去其他分数段的百分比

24、即可得到分数段69.579.5所占的百分比;(2)观察可知79.599.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)10%=50(人),“89.599.5”这一组人数占百分比为:(8+4)50100%=24%,所以“69.579.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为50,30%;(2)不能;由统计图知,79.589.5和89.599.5两组占参赛选手60%,而7879.5,所以他不能获奖;(3)由题意得树状图如下由树

25、状图知,共有12种等可能结果,其中恰好选中1男1女的共有8种结果,故P=.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22、(1)(4,6);y=1x18x+6(1);(3)点P的坐标为(3,5)或()【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(1)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)根据

26、顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)B(4,m)在直线y=x+1上,m=4+1=6,B(4,6),故答案为(4,6);A(,),B(4,6)在抛物线y=ax1+bx+6上,解得,抛物线的解析式为y=1x18x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n18n+6),PC=(n+1)(1n18n+6),=1n1+9n4,=1(n)1+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i

27、)若点P为直角顶点,则APC=90由题意易知,PCy轴,APC=45,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90如图1,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=1x18x+6 联立式,解得:或(与点A重合,舍去),C(3,0),即点C、M点重合当x=3时,y=x+1=5,P1(3,5);iii)若点C为直角顶点,则ACP=90y=1x18x+6=

28、1(x1)11,抛物线的对称轴为直线x=1如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+1=P1(,)点P1(3,5)、P1(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.23、 (1);(2).【解析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【详解】(1) “美”、“丽”、“光”、“明”的四个

29、小球,任取一球,共有4种不同结果,任取一个球,摸出球上的汉字刚好是“美”的概率P=(2)列表如下:美丽光明美-(美,丽)(光,美)(美,明)丽(美,丽)-(光,丽)(明,丽)光(美,光)(光,丽)-(光,明)明(美,明)(明,丽)(光,明)-根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比24、(

30、1)详见解析;(2)1+【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结如图,与相切于点D,是的直径,即(2)解:在中, .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.25、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OBP=90,根据全等三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形的性质得到CDOP=OC2,根据已知条件得到

31、,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,OA=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP=OC2,OP=AC,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3)连接BC,AB是O的直径,ACBC,AC=

32、9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键26、 (1)列表见解析;(2)这个游戏规则对双方不公平【解析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的【点睛】本题考查了列表法求概率注意树状图与列表法可以不重不漏的表示出所有等可能的情况用到的知识点为:概率=所求情况数与总情况数之比27、(1,0)、(2,0)【解析】试题分析:抛物线与x轴交点的纵坐标等于零,由此解答即可试题解析:解:令,即解得:,该抛物线与轴的交点坐标为(2,0),(1,0)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁