《2023届山东省泰安市、新泰市达标名校中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2023届山东省泰安市、新泰市达标名校中考数学四模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算正确的是()A(a1)a1B(2
2、a3)24a6C(ab)2a2b2Da3+a22a52如图,ADBECF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB1,BC3,DE2,则EF的长为()A4B.5C6D83下列图形是中心对称图形的是( )ABCD4把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D245如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论
3、:2a+b=0;abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1,其中正确的是( )ABCD6实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论ab;|b|=|d|;a+c=a;ad0中,正确的有()A4个B3个C2个D1个7如图,在平行四边形ABCD中,ABC的平分线BF交AD于点F,FEAB若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A48B35C30D248如图,在ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若CED的周长为6,则ABCD的周长为()A6B12C18D24
4、9如图,点A、B、C、D在O上,AOC120,点B是弧AC的中点,则D的度数是()A60B35C30.5D3010甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大A3B4C5D6二、填空题(共7小题,每小题3分,满分21分)11如图,在直角坐标系中,A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作A的切线,切点为Q,则切线长PQ的最小值是_12如图,在平面直角坐标系中,反比例函数y= (x0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2E
5、C,若四边形ODBE的面积为8,则k=_13若使代数式有意义,则x的取值范围是_14利用1个aa的正方形,1个bb的正方形和2个ab的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式_15关于x的分式方程=2的解为正实数,则实数a的取值范围为_16如图,在RtABC中,ACB=90,AC=4,BC=3,点D为AB的中点,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,则DB长为_17在平面直角坐标系xOy中,点A(4,3)为O上一点,B为O内一点,请写出一个符合条件要求的点B的坐标_三、解答题(共7小题,满分69分)18(10分)某市举行“传承好家风”征文比赛
6、,已知每篇参赛征文成绩记m分(60m100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表征文比赛成绩频数分布表分数段频数频率60m70380.3870m80a0.3280m90bc90m100100.1合计1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是 ;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数19(5分)如图,在ABC中,ABC=90,以AB为直径的O与AC边交于点D,过点D的直线交BC边于点E,BDE=A判断直线DE与O的位置关系,
7、并说明理由若O的半径R=5,tanA=,求线段CD的长20(8分)如图,在平面直角坐标系中,直线y1=2x2与双曲线y2=交于A、C两点,ABOA交x轴于点B,且OA=AB求双曲线的解析式;求点C的坐标,并直接写出y1y2时x的取值范围21(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点求此抛物线的解析式;求C、D两点坐标及BCD的面积;若点P在x轴上方的抛物线上,满足SPCD=SBCD,求点P的坐标.22(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜如图是试验阶段的某天恒温系统从开启到关
8、闭后,大棚内的温度y ()与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段请根据图中信息解答下列问题:求这天的温度y与时间x(0x24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10时,蔬菜会受到伤害问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?23(12分)一次函数的图象经过点和点,求一次函数的解析式24(14分)如图,已知点C是以AB为直径的O上一点,CHAB于点H,过点B作O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G(1)求证:AEFD=AF
9、EC;(2)求证:FC=FB;(3)若FB=FE=2,求O的半径r的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解【详解】解:A、因为(a1)=a+1,故本选项错误;B、(2a3)2=4a6,正确;C、因为(ab)2=a22ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误故选B【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键2、C【解析】解:ADBECF,根据平行线分线段成比例定理可得,即,
10、解得EF=6,故选C.3、B【解析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B.考点:中心对称图形.【详解】请在此输入详解!4、D【解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【详解】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图
11、案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4(71)24个,故选D【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键5、C【解析】试题解析:抛物线的顶点坐标A(1,3),抛物线的对称轴为直线x=-=1,2a+b=0,所以正确;抛物线开口向下,a0,b=-2a0,抛物线与y轴的交点在x轴上方,c0,abc0,所以错误;抛物线的顶点坐标A(1,3),x=1时,二次函数有最大值,方程ax2+bx+c=3有两个相等的实数根,所以正确;抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,抛物线与
12、x轴的另一个交点为(-2,0),所以错误;抛物线y1=ax2+bx+c与直线y2=mx+n(m0)交于A(1,3),B点(4,0)当1x4时,y2y1,所以正确故选C考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点6、B【解析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案【详解】解:由数轴,得a=-3.5,b=-2,c=0,d=2,ab,故正确;|b|=|d|,故正确;a+c=a,故正确;ad0,故错误;故选B【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键7、D【解析】分析:首先证明四边形
13、ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积详解:ABEF,AFBE, 四边形ABEF为平行四边形, BF平分ABC,四边形ABEF为菱形, 连接AE交BF于点O, BF=6,BE=5,BO=3,EO=4,AE=8,则四边形ABEF的面积=682=24,故选D点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型解决本题的关键就是根据题意得出四边形为菱形8、B【解析】四边形ABCD是平行四边形,DC=AB,AD=BC,AC的垂直平分线交AD于点E,AE=CE,CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,ABCD的周长=26=12,故选B
14、9、D【解析】根据圆心角、弧、弦的关系定理得到AOB= AOC,再根据圆周角定理即可解答.【详解】连接OB,点B是弧的中点,AOB AOC60,由圆周角定理得,D AOB30,故选D【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.10、C【解析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为2,3,1,5,6,7,8和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1故p(5)最大,
15、故选C二、填空题(共7小题,每小题3分,满分21分)11、2 【解析】分析:因为BP,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用APCDOC求出AP的长即可求解.详解:如图,作AP直线yx3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.A的坐标为(1,0),D(0,3),C(4,0),OD3,AC5,DC5,ACDC,在APC与DOC中,APCCOD90,ACPDCO,ACDC,APCDOC,APOD3,PB2故答案为2.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,
16、所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.12、1【解析】连接OB,由矩形的性质和已知条件得出OBD的面积=OBE的面积=四边形ODBE的面积,再求出OCE的面积为2,即可得出k的值【详解】连接OB,如图所示:四边形OABC是矩形,OAD=OCE=DBE=90,OAB的面积=OBC的面积,D、E在反比例函数y=(x0)的图象上,OAD的面积=OCE的面积,OBD的面积=OBE的面积=四边形ODBE的面积=1,BE=2EC,OCE的面积=OBE的面积=2,k=1故答案为:1【点睛】本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过
17、这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变13、x2【解析】直接利用分式有意义则其分母不为零,进而得出答案【详解】分式有意义,x的取值范围是:x+20,解得:x2.故答案是:x2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.14、a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为ab,面积为(ab)1,所以a11abb1(ab)1点睛:本题考查了运用
18、完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系15、a2且a1【解析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围【详解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,分式方程的解为正实数,2-a0,且2-a1,解得:a2且a1故答案为:a2且a1【点睛】分式方程的解16、【解析】试题分析:解:在RtABC中,ACB=90,AC=4,BC=3,AB=5,点D为AB的中点,CD=AD=BD=AB=2.5,过D作DEBC,将ACD绕着点C逆时针旋转,使点A落在CB的延长线A处,点D落在点D处,CD=AD=
19、AD,DE=1.5,AE=CE=2,BC=3,BE=1,BD=,故答案为考点:旋转的性质17、(2,2)【解析】连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标【详解】如图,连结OA,OA5,B为O内一点,符合要求的点B的坐标(2,2)答案不唯一故答案为:(2,2)【点睛】考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长三、解答题(共7小题,满分69分)18、(1)0.2;(2)答案见解析;(3)300【解析】第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的
20、值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【详解】解:(1)10.380.320.1=0.2,故答案为0.2;(2)100.1=100,1000.32=32,1000.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000(0.2+0.1)=300(篇)【点睛】掌握有关频率和频数的相关概念和计算,是解答本题的关键.19、(1) DE与O相切; 理由见解析;(2)【解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出ODDE,进而得出答案;(2)得出BCDACB,进而利用相似三角形的性质得出CD的长
21、【详解】解:(1)直线DE与O相切理由如下:连接ODOA=ODODA=A又BDE=AODA=BDEAB是O直径ADB=90即ODA+ODB=90BDE+ODB=90ODE=90ODDEDE与O相切;(2)R=5,AB=10,在RtABC中tanA=BC=ABtanA=10,AC=,BDC=ABC=90,BCD=ACBBCDACBCD=【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键20、(1);(1)C(1,4),x的取值范围是x1或0x1【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x1,可得A的坐
22、标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论【详解】(1)点A在直线y1=1x1上,设A(x,1x1),过A作ACOB于C,ABOA,且OA=AB,OC=BC,AC=OB=OC,x=1x1,x=1,A(1,1),k=11=4,;(1),解得:,C(1,4),由图象得:y1y1时x的取值范围是x1或0x1【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大21、 (1)y=(x1)2+4;(2)C(1,0),D(3,0);6;(3)P(1
23、+,),或P(1,)【解析】(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标【详解】解:(1)、抛物线的顶点为A(1,4), 设抛物线的解析式y=a(x1)2+4,把点B(0,3)代入得,a+4=3, 解得a=1, 抛物线的解析式为y=(x1)2+4;(2)由(1)知,抛物线的解析式为y=(x1)2+4; 令y=0,则0=(x1)2+4, x=1或x=3, C(1,0),D(3,0); CD=
24、4,SBCD=CD|yB|=43=6;(3)由(2)知,SBCD=CD|yB|=43=6;CD=4, SPCD=SBCD,SPCD=CD|yP|=4|yP|=3, |yP|= , 点P在x轴上方的抛物线上,yP0, yP= , 抛物线的解析式为y=(x1)2+4; =(x1)2+4,x=1, P(1+ , ),或P(1,)【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.22、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害【解析】分析:(1)应用待定系数法分段求函数解析式;(2)观察图象可得;(3)代
25、入临界值y=10即可详解:(1)设线段AB解析式为y=k1x+b(k0)线段AB过点(0,10),(2,14)代入得解得AB解析式为:y=2x+10(0x5)B在线段AB上当x=5时,y=20B坐标为(5,20)线段BC的解析式为:y=20(5x10)设双曲线CD解析式为:y=(k20)C(10,20)k2=200双曲线CD解析式为:y=(10x24)y关于x的函数解析式为:(2)由(1)恒温系统设定恒温为20C(3)把y=10代入y=中,解得,x=2020-10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关
26、系式解答时应注意临界点的应用23、y=2x+1【解析】直接把点A(1,1),B(1,5)代入一次函数y=kx+b(k0),求出k、b的值即可【详解】一次函数y=kx+b(k0)的图象经过点A(1,1)和点B(1,5),解得:故一次函数的解析式为y=2x+1【点睛】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键24、(1)详见解析;(2)详见解析;(3)2.【解析】(1)由BD是O的切线得出DBA=90,推出CHBD,证AECAFD,得出比例式即可(2)证AECAFD,AHEABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF即可(3)求出EF=FC,求出G=FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出FCB=CAB推出CG是O切线,由切割线定理(或AGCCGB)得出(2+FG)2=BGAG=2BG2,在RtBFG中,由勾股定理得出BG2=FG2BF2,推出FG24FG12=0,求出FG即可,从而由勾股定理求得AB=BG的长,从而得到O的半径r