山东省滨州市集团校2023年中考数学模试卷含解析.doc

上传人:lil****205 文档编号:88000431 上传时间:2023-04-19 格式:DOC 页数:17 大小:675.50KB
返回 下载 相关 举报
山东省滨州市集团校2023年中考数学模试卷含解析.doc_第1页
第1页 / 共17页
山东省滨州市集团校2023年中考数学模试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《山东省滨州市集团校2023年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省滨州市集团校2023年中考数学模试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;慢车速度为46km/h; A、B两地相距828km;快车从A地出发到B地用了14小时A2个B3个C4个D5个2已知M9x24x3,N5x24x2,则M与N的大小关系是( )AMNBMNCMN故选A【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况3、D【解析】根据有两个角对应相等的三角形相似,以及根据

3、两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可【详解】解:A、ABD=ACB,A=A,ABCADB,故此选项不合题意;B、ADB=ABC,A=A,ABCADB,故此选项不合题意;C、AB2=ADAC,A=A,ABCADB,故此选项不合题意;D、=不能判定ADBABC,故此选项符合题意故选D【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似4、A【解析】利用配方法,根据非负数的性质即可解决问题;【详解】解:x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,又(x+3)20,(2y-1)20,x2+4y

4、2+6x-4y+111,故选:A【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.5、A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180后能够重合6、B【解析】根据函数的图象即可直接得出结论;求得直线OA和DC的解析式,求得交点坐标即可;由图象无法求得B的横坐标;分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达

5、乙地,故选项A错误,轿车在行驶过程中进行了提速,故选项B正确,货车的速度是:300560千米/时,轿车在BC段对应的速度是:千米/时,故选项D错误,设货车对应的函数解析式为ykx,5k300,得k60,即货车对应的函数解析式为y60x,设CD段轿车对应的函数解析式为yaxb,得,即CD段轿车对应的函数解析式为y110x195,令60x110x195,得x3.9,即货车出发3.9小时后,轿车追上货车,故选项C错误,故选:B【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式7、A【解析】根据绝对值的性质进行解答即可【详解】实数5.1的绝对值是5.1故选A【点睛】本题考查的是实

6、数的性质,熟知绝对值的性质是解答此题的关键8、C【解析】先根据平角的定义求出1的度数,再由平行线的性质即可得出结论【详解】解:118010080,ac,180806040故选:C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补9、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆

7、大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆10、D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键11、A【解析】过两把直尺的交点C作CFBO与点F,由题意得CEAO,因为是两把完全相同的长

8、方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分AOB【详解】如图所示:过两把直尺的交点C作CFBO与点F,由题意得CEAO,两把完全相同的长方形直尺,CE=CF,OP平分AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理12、D【解析】试题分析:数据28,27,30,33,30,30,32的平均数是(28+27+30+33+30+30+32)7=30,30出现了3次,出现的次数最多,则众数是30;故选D考点:众数;算术平均数二

9、、填空题:(本大题共6个小题,每小题4分,共24分)13、240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360,我们可以计算机器人所转的回数,即36045=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走68=48m,根据时间=路程速度,即可得出结果.本题解析: 依据题中的图形,可知机器人一共转了360,36045=8,机器人一共行走68=48m该机器人从开始到停止所需时间为480.2=240s14、1【解析】根据题意可以得到交换函数,由顶点关

10、于x轴对称,从而得到关于b的方程,可以解答本题【详解】由题意函数y=1x1+bx的交换函数为y=bx1+1x y=1x1+bx=,y=bx1+1x=,函数y=1x1+bx与它的交换函数图象顶点关于x轴对称,=且,解得:b=1故答案为1【点睛】本题考查了二次函数的性质理解交换函数的意义是解题的关键15、136【解析】由圆周角定理得,A=BOD=44,由圆内接四边形的性质得,BCD=180-A=136【点睛】本题考查了1.圆周角定理;2. 圆内接四边形的性质.16、【解析】让黄球的个数除以球的总个数即为所求的概率【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是故答

11、案为:【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比17、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分18、【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论详解:平均数是12,这组数据的和=127=84,被墨汁覆盖三天的数的和=84412=36,这组数据唯一众数是13,被墨汁覆盖的三个数为:10,13,13, 故

12、答案为点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题20、旗杆AB的高

13、度为6.4米.【解析】分析:(1)根据坡度i与坡角之间的关系为:i=tan进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可本题解析:(1)斜坡BC的坡度i=1:,tanBCD= ,BCD=30;(2)在RtBCD中,CD=BCcosBCD=6=9,则DF=DC+CF=10(米),四边形GDFE为矩形,GE=DF=10(米),AEG=45,AG=DE=10(米),在RtBEG中,BG=GEtanBEG=100.36=3.6(米),则AB=AGBG=103.6=6.4(米).答:旗杆AB的高度为6.4米。21、 (1)、(t+6,t);(2)、当t=2时,S有最小值是

14、16;(3)、理由见解析【解析】(1)如图所示,过点E作EGx轴于点G,则COP=PGE=90,由题意知CO=AB=6、OA=BC=4、OP=t,PECP、PFOP,CPE=FPG=90,即CPF+FPE=FPE+EPG,CPF=EPG,又COOG、FPOG,COFP,CPF=PCO,PCO=EPG,在PCO和EPG中,PCO=EPG,POC=EGP,PC=EP,PCOEPG(AAS),CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)DAEG,PADPGE,AD=t(4t),BD=ABAD=6t(4t)=t2t+6,EGx轴、FPx轴,且EG=F

15、P,四边形EGPF为矩形,EFBD,EF=PG,S四边形BEDF=SBDF+SBDE=BDEF=(t2t+6)6=(t2)2+16,当t=2时,S有最小值是16;(3)假设FBD为直角,则点F在直线BC上,PF=OPAB,点F不可能在BC上,即FBD不可能为直角;假设FDB为直角,则点D在EF上,点D在矩形的对角线PE上,点D不可能在EF上,即FDB不可能为直角;假设BFD为直角且FB=FD,则FBD=FDB=45,如图2,作FHBD于点H,则FH=PA,即4t=6t,方程无解,假设不成立,即BDF不可能是等腰直角三角形22、(1)m2;(2)m=1【解析】(1)利用方程有两个不相等的实数根,

16、得=2(m-1)2-4(m2-3)=-8m+23,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值【详解】(1)=2(m1)24(m23)=8m+2方程有两个不相等的实数根,3即8m+23 解得 m2;(2)m2,且 m 为非负整数,m=3 或 m=1,当 m=3 时,原方程为 x2-2x-3=3,解得 x1=3,x2=1(不符合题意舍去), 当 m=1 时,原方程为 x22=3,解得 x1=,x2= , 综上所述,m=1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a3)的根与=b2-4ac有

17、如下关系:当3时,方程有两个不相等的实数根;当=3时,方程有两个相等的实数根;当3时,方程无实数根23、(1)y=60x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大【解析】分析:(1)根据总利润=(甲的售价-甲的进价)购进甲的数量+(乙的售价-乙的进价)购进乙的数量代入列关系式,并化简即可;(2)根据总成本18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50a70分三种情况讨论:一次项x的系数大于0、等于0、小于0,根据函数的增减性得出结论详解:(1)根据题意得:y=(16080)

18、x+(240100)(200x),=60x+28000,则y与x的函数关系式为:y=60x+28000;(2)80x+100(200x)18000,解得:x100,至少要购进100件甲商品,y=60x+28000,600, y随x的增大而减小,当x=100时,y有最大值,y大=60100+28000=22000,若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(16080+a)x+(240100)(200x) (100x120),y=(a60)x+28000,当50a60时,a600,y随x的增大而减小,当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,

19、获利最大,当a=60时,a60=0,y=28000,即商场应购进甲商品的数量满足100x120的整数件时,获利最大,当60a70时,a600,y随x的增大而增大,当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小24、今年妹妹6岁,哥哥10岁【解析】试题分析:设

20、今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得: 解得: 答:今年妹妹6岁,哥哥10岁考点:二元一次方程组的应用25、 (1)1500;(2)见解析;(3)108;(3)1223岁的人数为400万【解析】试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;(2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;(3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;(4)先计算调查中122

21、3岁的人数所占的百分比,再求网瘾人数约为2000万中的1223岁的人数试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为33022%=1500人故答案为1500 ;(2)1500-450-420-330=300人补全的条形统计图如图:(3)18-23岁这一组所对应的圆心角的度数为360=108故答案为108 ;(4)(300+450)1500=50%,考点:条形统计图;扇形统计图26、(1)ABD,ACD,DCE(2)BDFCEDDEF,证明见解析;(3)4.【解析】(1)根据等腰三角形的性质以及相似三角形的判定得出ADE

22、ABDACDDCE,同理可得:ADEACDADEDCE(2)利用已知首先求出BFD=CDE,即可得出BDFCED,再利用相似三角形的性质得出,从而得出BDFCEDDEF(3)利用DEF的面积等于ABC的面积的,求出DH的长,从而利用SDEF的值求出EF即可【详解】解:(1)图(1)中与ADE相似的有ABD,ACD,DCE(2)BDFCEDDEF,证明如下:B+BDF+BFD=30,EDF+BDF+CDE=30,又EDF=B,BFD=CDEAB=AC,B=CBDFCEDBD=CD,即又C=EDF,CEDDEFBDFCEDDEF (3)连接AD,过D点作DGEF,DHBF,垂足分别为G,HAB=A

23、C,D是BC的中点,ADBC,BD=BC=1在RtABD中,AD2=AB2BD2,即AD2=1023,AD=2SABC=BCAD=32=42,SDEF=SABC=42=3又ADBD=ABDH,BDFDEF,DFB=EFD DHBF,DGEF,DHF=DGF又DF=DF,DHFDGF(AAS)DH=DG=SDEF=EFDG=EF=3,EF=4【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用27、(1)证明见解析;(2)AC=【解析】(1)证明:连接ODBD是O的切线,ODBDACBD,ODAC,21OAOD11,12,即AD平分BAC(2)解:ODAC,BODBAC,即解得

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁