《山东省济南回民中学2023年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济南回民中学2023年初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1计算|3|的结果是()A1 B5 C1 D52二次函数y=(x+2)21的图象的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=23如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD4点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )A1
2、 B-6 C2或-6 D不同于以上答案5数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A点AB点BC点CD点D6如图,在ABC中,AC=BC,点D在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D627(2016福建省莆田市)如图,OP是AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定POCPOD的选项是()APCOA,PDOBBOC=ODCOPC=OPDDPC=PD8解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=49甲、乙两人分别以4m/s和5m/s的
3、速度,同时从100m直线型跑道的起点向同一方向起跑,设乙的奔跑时间为t(s),甲乙两人的距离为S(m),则S关于t的函数图象为()ABCD10如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB1,点A在函数y(x0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y(x0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_12如图,已知正方形边长为4,以A为圆心,AB
4、为半径作弧BD,M是BC的中点,过点M作EMBC交弧BD于点E,则弧BE的长为_13如图,等边ABC的边长为6,ABC,ACB的角平分线交于点D,过点D作EFBC,交AB、CD于点E、F,则EF的长度为_14如图,ABC中,AD是中线,AE是角平分线,CFAE于F,AB=10,AC=6,则DF的长为_15关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值_16如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32,则D=_度三、解答题(共8题,共72分)17(8分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部
5、分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;(2)在扇形统计图中,求A类对应扇形圆心角的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数18(8分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍且购买
6、一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?19(8分)先化简,再求值:,其中a为不等式组的整数解20(8分)观察下列各个等式的规律:第一个等式:=1,第二个等式: =2,第三个等式:=3请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你
7、猜想的等式是正确的21(8分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元(1)请求出y关于x的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?AB成本(元/瓶)5035利润(元/瓶)201522(10分)如图,已知A是O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB求证:AB是O的切线;若ACD=45,OC
8、=2,求弦CD的长23(12分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格24为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时
9、听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一20.04二100.2三14b四a0.32五80.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有 名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】原式利用算术平方根定义,以及绝对值的代数意义计算即可求出值【详解】原式 故选:B【点睛】此题考查了实数的运算,熟练掌握运算法则
10、是解本题的关键2、D【解析】根据二次函数顶点式的性质解答即可.【详解】y=(x+2)21是顶点式,对称轴是:x=-2,故选D.【点睛】本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.3、D【解析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图
11、像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。4、C【解析】解:点A为数轴上的表示-1的动点,当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1故选C点睛:注意数的大小变化和平移之间的规律:左减右加与点A的距离为4个单位长度的点B有两个,一个向左,一个向右5、A【解析】根据绝对值的含义和求法,判断出绝对值等于2的数是2和2,据此判断出绝对值等于2的点是哪个点即可【详解】解:绝对值等于2的数是2和2,绝对值等于2的点是点
12、A故选A【点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数有理数的绝对值都是非负数6、A【解析】根据等腰三角形的性质得出BCAB,再利用平行线的性质解答即可【详解】在ABC中,ACBC,BCAB,AEBD,CAE118,BCABCAE180,即2B180118,解得:B31,故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出BCAB7、D【解析】试题分析:对于A,由PCOA,PDOB得出PCO=PDO=90,根据AAS判定定理可以判定POCPO
13、D;对于B OC=OD,根据SAS判定定理可以判定POCPOD;对于C,OPC=OPD,根据ASA判定定理可以判定POCPOD;,对于D,PC=PD,无法判定POCPOD,故选D考点:角平分线的性质;全等三角形的判定8、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.9、B【解析】匀速直线运动的路程s与运动时间t成正比,s-t图象是一条倾斜的直线解答【详解】甲、乙两人分别以4m/s和5m/s的速度,两人的相对速
14、度为1m/s,设乙的奔跑时间为t(s),所需时间为20s,两人距离20s1m/s=20m,故选B【点睛】此题考查函数图象问题,关键是根据匀速直线运动的路程s与运动时间t成正比解答10、C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论详解:OB=1,ABOB,点A在函数 (x0)的图象上,k=4,反比例函数的解析式为,O1(3,0),C1O1x轴,当x=3时, P 故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.二、填
15、空题(本大题共6个小题,每小题3分,共18分)11、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7=3,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键12、【解析】延长ME交AD于F,由M是BC的中点,MFAD,得到F点为AD的中点,即AF=AD,则AEF=30,得到BAE=30,再利用弧长公式计算出弧BE的长【详解】延长ME交AD于F,如图,M是BC的中点,MFAD,F点为
16、AD的中点,即AF=AD又AE=AD,AE=2AF,AEF=30,BAE=30,弧BE的长=故答案为【点睛】本题考查了弧长公式:l=也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度13、4【解析】试题分析:根据BD和CD分别平分ABC和ACB,和EFBC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC然后即可得出答案解:在ABC中,BD和CD分别平分ABC和ACB,EBD=DBC,FCD=DCB,EFBC,EBD=DBC=EDB,FCD=DCB=FDC,BE=DE,DF=EC,EF=DE+DF,EF=EB+CF=2BE,等边ABC的边长为6,EFBC
17、,ADE是等边三角形,EF=AE=2BE,EF=,故答案为4考点:等边三角形的判定与性质;平行线的性质14、1【解析】试题分析:如图,延长CF交AB于点G,在AFG和AFC中,GAF=CAF,AF=AF,AFG=AFC,AFGAFC(ASA)AC=AG,GF=CF又点D是BC中点,DF是CBG的中位线DF=BG=(ABAG)=(ABAC)=115、1【解析】先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可【详解】 解得 所以可以取 故答案为:1【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键16、1【解析】分析:连接OC,根据圆周角定理得到COD=2A,根
18、据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64,CD为O的切线,OCCD,D=90-COD=1,故答案为:1点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键三、解答题(共8题,共72分)17、(1)800,240;(2)补图见解析;(3)9.6万人【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案试题解析:(1)本次调查的市民有20025%=800(人),B类别的人数
19、为80030%=240(人),故答案为800,240;(2)A类人数所占百分比为1(30%+25%+14%+6%)=25%,A类对应扇形圆心角的度数为36025%=90,A类的人数为80025%=200(人),补全条形图如下:(3)12(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图18、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2
20、)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球【详解】(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,根据题意得:,解得:x50,经检验,x50是原方程的解,且符合题意,x+21答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)设可购买m个乙种足球,则购买(50m)个甲种足球,根据题意得:50(1+10%)(50m)+1(110%)m2910,解得:m2答:这所学校最多可购买2个乙种足球【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(
21、2)要与实际相联系19、,1【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可【详解】解:原式,不等式组的解为a5,其整数解是2,3,4,a不能等于0,2,4,a3,当a3时,原式1【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键20、(1)=4;(2)=n【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2)第n个等式是:=n证明如下:= =
22、 =n第n个等式是:=n点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子21、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元 【解析】试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数A种品牌白酒一瓶的利润+B种品牌白酒瓶数B种品牌白酒一瓶的利润,列出函数关系式;(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数A种品牌白酒一瓶的成本+B种品牌白酒瓶数B种品牌白酒一瓶的成本,列出不等式,求x的值,再代
23、入(1)求利润(3)列出y与x的关系式,求y的最大值时,x的值.试题解析:(1)y=20x+15(600-x) =5x+9000,y关于x的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)26400, 解得x360, y=5x+9000,50,y随x的增大而增大,当x=360时,y有最小值为10800,每天至少获利10800元;(3) ,当x=250时,y有最大值9625,每天生产A产品250件,B产品350件获利最大,最大利润为9625元 22、(1)见解析;(2)+【解析】(1)利用题中的边的关系可求出OAC是正三角形,然后利用角边关系又可求出CAB=30,从
24、而求出OAB=90,所以判断出直线AB与O相切;(2)作AECD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD【详解】(1)直线AB是O的切线,理由如下:连接OAOC=BC,AC=OB,OC=BC=AC=OA, ACO是等边三角形,O=OCA=60,又B=CAB,B=30,OAB=90AB是O的切线(2)作AECD于点EO=60,D=30ACD=45,AC=OC=2,在RtACE中,CE=AE=;D=30,AD=2【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识
25、,属于中考常考题型23、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=考点:列表法与树状图法;概率公式24、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)20.04=50(2)500.32=16 1450=0.28(3)(4)(0.32+0.16)100%=48%考点:频数分布直方图