《山东省临沂市临沭县重点名校2023年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省临沂市临沭县重点名校2023年中考数学模试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列事件是确定事件的是()A阴天一定会下雨B黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C打开电视机,任选一个频道,屏幕上正在播放新闻联播D在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书2 “可燃冰”的开发成功,拉开了我国开发新
2、能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )A0.81011B81010C80109D8001083如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A5B10C10D154若ABCABC,A=40,C=110,则B等于( )A30B50C40D705如图,RtABC中,C=90,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D86下列运算正确的是()A(a3)2=a29B()1=2Cx+y=xyD
3、x6x2=x37如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )ABCD8若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )ABCD9如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.510三角形两边的长是3和4,第三边的长是方程x212x350的根,则该三角形的周长为( )A14B12C12或14D以上都不对11计算2a23a2
4、的结果是( )A5a4B6a2C6a4D5a212已知x=2是关于x的一元二次方程x2x2a=0的一个解,则a的值为()A0B1C1D2二、填空题:(本大题共6个小题,每小题4分,共24分)13分解因式:=_14如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要_枚棋子15据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为_16化简:= .17甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年品种甲9.89.910.110
5、10.2甲乙9.410.310.89.79.8乙经计算,试根据这组数据估计_中水稻品种的产量比较稳定18如图,平行四边形ABCD中,AB=AC=4,ABAC,O是对角线的交点,若O过A、C两点,则图中阴影部分的面积之和为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,直线y1=x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点(1)求y与x之间的函数关系式;(2)直接写出当x0时,不等式x+b的解集;(3)若点P在x轴上,连接AP把ABC的面积分成1:3两部分,求此时点P的坐标20(6分)解方程:1+21
6、(6分)已知关于 x 的一元二次方程 x22(k1)x+k(k+2)0 有两个不相等的实数根求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根22(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大
7、利润的方式进行销售,能否销售完这批蜜柚?请说明理由.23(8分)如图,AB为O的直径,D为O上一点,以AD为斜边作ADC,使C=90,CAD=DAB求证:DC是O的切线;若AB=9,AD=6,求DC的长24(10分)如图,以ABC的边AB为直径的O分别交BC、AC于F、G,且G是的中点,过点G作DEBC,垂足为E,交BA的延长线于点D(1)求证:DE是的O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长25(10分)已知. (1)化简A;(2)如果a,b 是方程的两个根,求A的值26(12分)为了丰富校园文化,促进学生全面发展我市某区教育局在全区
8、中小学开展“书法、武术、黄梅戏进校园”活动今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率27(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购
9、进甲种玩具的件数与用150元购进乙种玩具的件数相同(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】试题分析:找到一定发生或一定不发生的事件即可A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛
10、出的篮球一定会下落,是必然事件故选D考点:随机事件2、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:将800亿用科学记数法表示为:81故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、B【解析】作点E关于BC的对称点E,连接EG交BC于点F,此时四边形EFGH周长取最小值,过点G作GGAB于点G,如图所示,AE=C
11、G,BE=BE,EG=AB=10,GG=AD=5,EG=,C四边形EFGH=2EG=10,故选B【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键4、A【解析】利用三角形内角和求B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:B=30,根据相似三角形的性质可得:B=B=30.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.5、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知AB=8,两等圆A
12、,B外切,两圆的半径均为4,A+B=90,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键6、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a3)2=a26a+9,故该选项错误;B. ()1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.7
13、、A【解析】试题分析:观察图形可知,该几何体的主视图是故选A考点:简单组合体的三视图8、D【解析】根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解【详解】A、二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、x1x2,=b2-4ac0,故本选项错误;C、若a0,则x1x0x2,若a0,则x0x1x2或x1x2x0,故本选项错误;D、若a0,则x0-x10,x0-x20,所以,(x0-x1)(x0-x2)0,a(x0-x1)(x0-x2)0,若a0,则(x0-x1)与(x0-x2)同号,a(x0-x1)
14、(x0-x2)0,综上所述,a(x0-x1)(x0-x2)0正确,故本选项正确9、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率10、B【解析】解方程得:x=5或x=1当x=1时,3+4=1,不能组成三角形;当x=5时,3+45
15、,三边能够组成三角形该三角形的周长为3+4+5=12,故选B11、D【解析】直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a23a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.12、C【解析】试题分析:把方程的解代入方程,可以求出字母系数a的值x=2是方程的解,422a=0,a=1故本题选C【考点】一元二次方程的解;一元二次方程的定义二、
16、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式【详解】直接提取公因式即可:14、1【解析】根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+611个,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数【详解】根据题意分析可得:第1个图案中棋子的个数5个第2个图案中棋子的个数5+611个每个图形都比前一个图形多用6个第30个图案中棋子的个数为5+2961个故答案为1【点睛】考核知识点:
17、图形的规律.分析出一般数量关系是关键.15、3.86108【解析】根据科学记数法的表示(a10n,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数)形式可得:3.86亿=386000000=3.86108.故答案是:3.86108.16、【解析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.【详解】22=4,=2.【点睛】本题考查求算术平方根,熟记定义是关键.17、甲【解析】根据方差公式
18、分别求出两种水稻的产量的方差,再进行比较即可.【详解】甲种水稻产量的方差是:,乙种水稻产量的方差是:,0.020.124.产量比较稳定的小麦品种是甲.18、1【解析】AOB=COD,S阴影=SAOB四边形ABCD是平行四边形,OA=AC=1=2ABAC,S阴影=SAOB=OAAB=21=1【点睛】本题考查了扇形面积的计算三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)x1;(3)P(,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x0时,不等式x+b
19、的解集为x1;(3)分两种情况进行讨论,AP把ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3=,或OP=4=,进而得出点P的坐标详解:(1)把A(1,m)代入y1=x+4,可得m=1+4=3,A(1,3),把A(1,3)代入双曲线y=,可得k=13=3,y与x之间的函数关系式为:y=;(2)A(1,3),当x0时,不等式x+b的解集为:x1;(3)y1=x+4,令y=0,则x=4,点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,b=,y2=x+,令y2=0,则x=3,即C(3,0),BC=7,AP把ABC的面积分成1:3两部分,CP=BC=
20、,或BP=BC=OP=3=,或OP=4=,P(,0)或(,0)点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点20、无解【解析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x23xx23x18,解得:x3,经检验x3是增根,分式方程无解【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.21、方程的根【解析】(1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式
21、,解之即可得出k的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根【详解】(1)关于x的一元二次方程x11(ka)x+k(k+1)=0有两个不相等的实数根,=1(k1)14k(k1)=16k+40,解得:k (1)当k=0时,原方程为x1+1x=x(x+1)=0,解得:x1=0,x1=1当k=0时,方程的根为0和1【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程22、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
22、【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 ,将点(10,200)、(15,150)分别代入,则,解得 ,蜜柚销售不会亏本,又, , ;(2) 设利润为元,则 =, 当 时, 最大为1210, 定价为19元时,利润最大,最大利润是1210元;(3) 当 时,11040=44004800,不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次
23、函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.23、(1)见解析;(2)【解析】分析:(1)如下图,连接OD,由OA=OD可得DAO=ADO,结合CAD=DAB,可得CAD=ADO,从而可得ODAC,由此可得C+CDO=180,结合C=90可得CDO=90即可证得CD是O的切线;(2)如下图,连接BD,由AB是O的直径可得ADB=90=C,结合CAD=DAB可得ACDADB,由此可得,在RtABD中由AD=6,AB=9易得BD=,由此即可解得CD的长了.详解:(1)如下图,连接ODOA=OD,DAB=ODA,CAD=DAB,ODA=CADACODC+ODC=180C=90O
24、DC=90ODCD,CD是O的切线(2)如下图,连接BD,AB是O的直径,ADB=90,AB=9,AD=6,BD=3,CAD=BAD,C=ADB=90,ACDADB,CD=点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.24、(1)证明见解析;(1);(3)1.【解析】(1)要证明DE是的O切线,证明OGDE即可;(1)先证明GBAEBG,即可得出=,根据已知条件即可求出BE;(3)先证明AGBCGB,得出BC=AB=6,BE=4.8再根据OGBE得出=,即可计算出A
25、D.【详解】证明:(1)如图,连接OG,GB,G是弧AF的中点,GBF=GBA,OB=OG,OBG=OGB,GBF=OGB,OGBC,OGD=GEB,DECB,GEB=90,OGD=90,即OGDE且G为半径外端,DE为O切线;(1)AB为O直径,AGB=90,AGB=GEB,且GBA=GBE,GBAEBG,;(3)AD=1,根据SAS可知AGBCGB,则BC=AB=6,BE=4.8,OGBE,即,解得:AD=1【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.25、(1);(2)-. 【解析】(1)先通分,
26、再根据同分母的分式相加减求出即可;(2)根据根与系数的关系即可得出结论【详解】(1)A=;(2)a,b 是方程的两个根,a+b=4,ab=12,【点睛】本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键26、(1)50;(2)115.2;(3). 【解析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案解:(1)参加本次比赛的学生有:(人) (2)B等级的学生共有:(人). 所占的百分比为:B等级所对应扇形的圆心角
27、度数为:. (3)列表如下:男女1女2女3男(女,男)(女,男)(女,男)女1(男,女)(女,女)(女,女)女2(男,女)(女,女)(女,女)女3(男,女)(女,女)(女,女)共有12种等可能的结果,选中1名男生和1名女生结果的有6种.P(选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键27、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.【解析】试题分析:(1)设甲种玩具进价
28、x元/件,则乙种玩具进价为(40x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,x=15,经检验x=15是原方程的解40x=1甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,解得20y2因为y是整数,甲种玩具的件数少于乙种玩具的件数,y取20,21,22,23,共有4种方案考点:分式方程的应用;一元一次不等式组的应用